The last case of smallpox in Denmark--the organizing conditions in 1970.

Author: Henrik Permin
Palle Petersen
Niels Høiby

Source: Dan Medicinhist Arbog. 2005;33:115-44

Date: 2005
Language: Danish
Publication Type: Article

Keywords: Denmark - epidemiology
Disease Outbreaks - history
History, 18th Century
History, 19th Century
History, 20th Century
Humans
Infection Control - history - methods
Patient Isolation - history
Smallpox - epidemiology - history - prevention & control
Smallpox Vaccine - history

Abstract: Smallpox contributed to many deaths in Denmark up to the introduction of the vaccination in the beginning of the 19th. Century. The last minor smallpox epidemic in Denmark was in 1924, and subsequently no doctors had special experience in smallpox. In September 1970 a Norwegian medical student died from smallpox in Copenhagen after returning from a journey to Afghanistan, where he has been hospitalized for enteritis. During the 5 days in Copenhagen before hospitalization he had had extensive contacts with many people. He was hospitalized at Blegdamshospital and was isolated, and the diagnosis of smallpox was verified on day 5. He was then totally isolated in a pavilion with 2 nurses and one doctor. The initial diarrhoea (Salmonella typhimurium), and later sepsicaemia with salmonella, the copious expectoration up to 1 1/2 l pr day (Streptococcus pneumoniae, Klebsiella pneumoniae, E. coli, 9-streptococci), the enormous exudation from the desquamated skin caused large problems concerning water, electrolytes and protein balance, requiring an input up to 13 l per day. It was necessary to perform tracheotomy and artificial ventilation. He was treated as a patient with extensive burns with metal sheets and when his body temperature fell to 30 degrees C with electrical heat. He died after 25 days of smallpox with complicating extensive skin ulavs corresponding to a pathological picture of toxic epidermal necrolysis (TEN). The containment was successful in cooperation with the Danish National Board on Health, the Medical Officer of Health from Copenhagen and the county (where the patient lived), police, State Serum Institute, and Ministries of the Interior and Foreign Affairs. Vaccination of the exposed persons and the hospital staff, isolation in small groups (maximum 20 persons) of 589 primary contacts in the hospital pavement-wards and 12 military tents were performed. No secondary cases occurred. The outbreak of smallpox in Copenhagen ended, and the city was not declared "local infected area", and we avoided a panic mass vaccination of large group of people. The article describes these activities, which are effectuated within a few days and headed by a capable and unanimous leadership, in a serious and complicated situation and with an engaged cooperation from the whole staff.

PubMed ID: 17152758 View in PubMed

The persistence of American Indian health disparities.

Author: David S Jones
Disparities in health status between American Indians and other groups in the United States have persisted throughout the 500 years since Europeans arrived in the Americas. Colonists, traders, missionaries, soldiers, physicians, and government officials have struggled to explain these disparities, invoking a wide range of possible causes. American Indians joined these debates, often suggesting different explanations. Europeans and Americans also struggled to respond to the disparities, sometimes working to relieve them, sometimes taking advantage of the ill health of American Indians. Economic and political interests have always affected both explanations of health disparities and responses to them, influencing which explanations were emphasized and which interventions were pursued. Tensions also appear in ongoing debates about the contributions of genetic and socioeconomic forces to the pervasive health disparities. Understanding how these economic and political forces have operated historically can explain both the persistence of the health disparities and the controversies that surround them.
Goroji Nakagawa (1768-1848), who returned to Japan from Siberia in 1812, introduced Jennerian vaccination. At present three persons have been identified as his disciples. Yuzo Shiratori (1813?-1851) was the most senior among them. He was the second son of a wealthy merchant in Hakodate and learned medicine under Teisai Hino (1797-1850), a leading physician in Kyoto. It is unknown when he came back to Hakodate; however, Nakagawa taught him the Russian method of vaccination in about 1840. Shiratori went to Akita of the Satake domain to learn medicine further and there he practiced vaccination to prevent smallpox epidemics. Because his method was recognized as being effective, the Satake domain accepted to employ it formally and asked him to teach the method among domain physicians in the period from about 1841-1844. Details of biographies of the other two disciples, Keisaku Takagi and Kozen Sakurai, as well as their practical method of vaccination, have still not yet been clarified; however, it has been established that they used it with many people of Matsuma-e and neighboring areas. In September of 1849 Hino failed to successfully vaccinate on seven consecutive occasions using cow pox crusts obtained from Nagasaki, but he was finally successful in the last trial, using the Russian method as informed by Shiratori. Thus Hino could distribute much lymph among many physicians in the west half of Japan. Considering the above matters, we can conclude that Nakagawa’s method had a significant influence on the history of Jennerian vaccination in Japan.
In Lvov and Cracow at the times of World War I, the infectious diseases such as tuberculosis followed by typhus fever, typhoid fever, dysentery, as well as scarlet fever, diphtheria, measles, whooping cough, smallpox, cholera and venereal diseases (particularly syphilis) posed one of the most significant and dangerous problems for inhabitants. Their increased prevalence was the result of deteriorating sanitary and living conditions of the city population. The spread of epidemic infectious diseases was enhanced by marching troops, migration of civilians and war prisoners, return of large groups of displaced people and demobilized soldiers after regaining independence in November 1918. Additionally, unfavorable epidemiological situation in Lvov deteriorated at the time of the war with Ukrainians (November 1918-April 1919) and Bolsheviks (July-August 1920). The control of infectious diseases was in the hands of regional local physicians who referred patients to hospitals, isolated homes, bath and disinfection institutions, and conducted vaccinations against smallpox. A decrease in infectious diseases prevalence and deaths to the prewar levels occurred in 1922.
A look at hospital care in New Archangel (1835-1840).
https://arctichealth.org/en/permalink/ahliterature221398
Author: R. Fortuine
Language: English
Publication Type: Article
Keywords: Alaska
Disease Outbreaks - history
History, 19th Century
Hospitals, Rural - history
Humans
Smallpox - history
PubMed ID: 8238777 View in PubMed

Public health. 'Destructionists' fight to keep a dream alive.
https://arctichealth.org/en/permalink/ahliterature191016
Author: Martin Enserink
Source: Science. 2002 Mar 15;295(5562):2005
Date: Mar-15-2002
Language: English
Publication Type: Article
Keywords: Animals
Antiviral Agents
Biological Specimen Banks
Bioterrorism
Disease Models, Animal
Haplorhini
Humans
Public Opinion
Research
Russia
Smallpox - drug therapy - epidemiology - prevention & control
Smallpox Vaccine
United States
Variola virus
PubMed ID: 11896255 View in PubMed
Public health. Dead virus walking.
https://arctichealth.org/en/permalink/ahliterature191017
Author: Martin Enserink
 Richard Stone
Date: Mar-15-2002
Language: English
Publication Type: Article
Keywords: Animals
 Antiviral Agents
 Biological Specimen Banks
 Bioterrorism
 Centers for Disease Control and Prevention (U.S.)
 Containment of Biohazards
 Disease Models, Animal
 Genome, Viral
 Humans
 Macaca fascicularis
 Monkeypox virus - genetics - pathogenicity
 Research
 Sequence Analysis, DNA
 Siberia
 Smallpox - diagnosis - epidemiology - prevention & control - virology
 Smallpox Vaccine
 United States
 Variola virus - genetics - pathogenicity
 World Health Organization
PubMed ID: 11896253 View in PubMed
The speckled monster. Canada, smallpox and its eradication.

https://arctichealth.org/en/permalink/ahliterature189139

Author: Luis Barreto
Christopher J Rutty

Author Affiliation: Aventis Pasteur Limited, Toronto. Luis.Barreto@aventis.com

Language: English
French

Publication Type: Article

Keywords: Biological Warfare
Bioterrorism
Canada - epidemiology
Disease Outbreaks - history - prevention & control
History, 17th Century
History, 18th Century
History, 19th Century
History, 20th Century
Humans
Immunization Programs - history
Smallpox - epidemiology - history - prevention & control
Smallpox Vaccine - administration & dosage - history

PubMed ID: 12154540 View in PubMed