Assessment of epidemic manifestations of the West Nile fever in the Volgograd region depending on the climatic conditions.

https://arctichealth.org/en/permalink/ahliterature263064

Author: V A Safronov
 V Ju Smolenskij
 V P Smeljanskij
 S T Savchenko
 A S Razdorskij
 V P Toporkov

Source: Vopr Virusol. 2014;59(6):42-6

Date: 2014

Language: Russian

Publication Type: Article

Keywords: Animals
 Climate
 Culicidae - virology
 Epidemics
 Epidemiological Monitoring
 Humans
 Incidence
 Insect Vectors - virology
 Russia - epidemiology
 Temperature
 West Nile Fever - epidemiology - transmission - virology
 West Nile virus - physiology

Abstract: Results of the analysis of the increase in the incidence of epidemic of the West Nile fever and climate conditions in the Volgograd region were presented. Certain seasonal periods and threshold values of temperature and humidity statistically associated with the epidemic rise were identified. The discussion of the probable mechanisms of indirect effects of atmospheric heat on the elements of the epidemic process was carried out.

PubMed ID: 25929037 View in PubMed
[Blood-sucking mosquitoes (family Culicidae) in the oak-groves of the Belgorod Region: Species-specific composition, phenological characteristics, and value in Dirofilaria transmission].

https://arctichealth.org/en/permalink/ahliterature274560

Author: Yu A Prisnyi
Language: Russian
Publication Type: Article
Keywords: Animals
Culicidae - classification - parasitology
Dirofilaria immitis - genetics - growth & development - pathogenicity
Dirofilaria repens - genetics - growth & development - pathogenicity
Dirofilariasis - epidemiology - parasitology - pathology - transmission
Ecosystem
Epidemiological Monitoring
Female
Forests
Host-Parasite Interactions
Humans
Insect Vectors - parasitology
Life Cycle Stages - physiology
Male
Quercus
Russia - epidemiology
PubMed ID: 27405211 View in PubMed

[Complete genome analysis of the Batai virus (BATV) and the new Anadyr virus (ANADV) of the Bunyamwera group (Bunyaviridae, Orthobunyavirus) isolated in Russia].

https://arctichealth.org/en/permalink/ahliterature263065

Author: A M Shchetinin
D K Lvov
S V Alkhovskiy
M Yu Shchelkanov
V A Aristova
T N Morozova
A K Gitelman
P G Deryabin
A G Botikov
Date: 2014
Language: Russian
Publication Type: Article
Almost complete nucleotide sequences for the S, M, and L segments were obtained for three strains of the Batai virus (Bunyamwera serogroup, genus Orthobunyavirus, Bunyaviridae family). Based on the results of the phylogenetic analysis conducted for the three genomic segments LEIV Ast507 and LEIV Ast528 strains were grouped with other European BATV isolates and were found to be almost identical to the strain 42 isolated from Volgograd Region, Russia, 2003. Surprisingly, LEIV-13395 strain isolated from the Aedes sp. mosquitoes in Magadan Oblast, 1987, turned out to be a novel genotype inside Bunyamwera serogroup. The highest nucleotide identity levels of LEIV-13395 genomic segments (86.9%, 80.8%, 79.7% for S, M and L segments respectively) were observed with corresponding segments of the Batai virus.

PubMed ID: 25929031 View in PubMed
The ability of *D. repens* to complete its ontogenesis in man points to their obligate, rather than facultative relationships. The fact that microfilariae are rarely found in human blood or are absent there may be associated with the removal of developing dirofilariae from humans in earlier than they achieve sexual maturity. Facultative ecological relationships to mosquitoes may be one of the reasons for limitation of human invasion cases. However, in long-standing microfilaremia in man (an obligate host), *D. repens* may take part in the epidemiological chain of dirofilariasis as a source of invasion.
Information on the epizootic situation in plague in the natural foci of North Caucasus and on the influence of a number of anthropogenic and natural factors on this situation is presented. The data given in this work indicate that under the conditions of the anthropogenic transformation of landscapes the character of the epizootic manifestations of plague is changed and new factors, capable of aggravating epidemiological situation, appear. In addition, some other factors must be considered, such as the insufficient financing of reliable field surveys at present, the impossibility of making reliable epizootological studies due to causes of the social character (armed conflicts), thus making it impossible to evaluate, with a sufficient degree of reliability, the real epizootic state of a number of territories and, therefore, the risk of human infection. In this connection the necessity to carefully plan prophylactic measures and measures aimed at the localization and liquidation of the probable foci of infection arises.
[Dirofilaria (D. repens) in the Russian Federation and some of the Commonwealth of Independent States countries: situation and trends].

https://arctichealth.org/en/permalink/ahliterature181953

Author: T I Avdiukhina
 V F Postnova
 L M Abrosimova
 A I Kovtunov
 S E Arakel'ian
 N E Murashov
 L V Plenkina
 E S Grigor'eva
 V B Korotkov
 G A Petukhova
 L I Kurbatova
 Z P Derbina
 A P Dmitriev
 L I Korobov
 V V Loginov
 G A Grigor'e vas
 V N Tarasov
 S I Savel'ev
 E P Sirotina

Language: Russian

Publication Type: Article

Keywords:
Adolescent
Adult
Aged
Animals
Child
Child, Preschool
Culicidae - parasitology
Dirofilaria - classification
Dirofilaria - diagnosis - epidemiology - therapy
Eye Infections, Parasitic - diagnosis - epidemiology - therapy
Female
Humans
Infant
Infant, Newborn
Insect Vectors - parasitology
Male
Russia - epidemiology
Skin Diseases, Parasitic - diagnosis - epidemiology - therapy
[Dirofilaria in the Rostov Region].
https://arctichealth.org/en/permalink/ahliterature162211

Author: S A Nagorny
L A Ermakova
O S Dumbadze
Iu G Beskrovaia
E A Chernikova

Language: Russian
Publication Type: Article
Keywords: Adolescent
Adult
Aged
Animals
Child
Culicidae - parasitology
Dirofilaria - classification - isolation & purification
Dirofilaria - epidemiology
Disease Reservoirs - parasitology
Dogs - parasitology
Female
Humans
Insect Vectors - parasitology
Male
Middle Aged
Russia - epidemiology
Species Specificity
Urban Population

PubMed ID: 17663041 View in PubMed

Arctic Health
[Dirofilariasi in the Volgograd region--a new disease in the region].
https://arctichealth.org/en/permalink/ahliterature179698

Author: E Iu Safronova
A A Vorob'ev
N I Latyshevskaia
V V Ermilov
G B Chulkova

Language: Russian

Publication Type: Article

Keywords: Adolescent
Adult
Aged
Animals
Child
Child, Preschool
Culicidae
Dirofilaria - isolation & purification
Dirofilariasis - diagnosis - epidemiology - prevention & control
Dog Diseases - diagnosis - parasitology - prevention & control
Dogs
Eye Diseases - epidemiology - parasitology - prevention & control
Female
Health Knowledge, Attitudes, Practice
Humans
Insect Vectors
Male
Middle Aged
Retrospective Studies
Risk factors
Russia - epidemiology
Skin Diseases - epidemiology - parasitology - prevention & control

Abstract: Due to the availability of factors whose reasons have not been studied so far for this area. Volgograd and
Volgograd Region should be recognized to be a dirofilariasis-endemic zone. The lack of an actual system of
prevention, as well as other objective and subjective factors are responsible for constantly increasing numbers of
ill human beings and animals. The disease awaits further thorough studies to reveal the causes of this disease in
the area; to elaborate a package of preventive measures, and to improve methods of diagnosis, surgical and
medical treatments.

PubMed ID: 15193056 View in PubMed

[Distribution of viruses from the Californian encephalitis serogroup (Bunyaviridae, Bunyavirus) in the
northern expanses of Russia].
https://arctichealth.org/en/permalink/ahliterature206904
The study was carried out in 1983-1991 and covered a territory of about 10 x 10(6) km2 in various physico-
geographic areas (East Fennoscandia, Northern Russian Plain, West Siberia, Central Siberia, North-Eastern
Siberia, and Northern Pacific Region) in the Arctic, Subarctic, Northern-Central-Southern taiga, forest-steppe, and
steppe in Northern Russia. A total of 251 strains were isolated from 1391,900 mosquitoes, identified as the
California group snowshoe hare (83), Inkoo (44), and Tahyna (2) viruses; 122 strains were not completely
identified. Some of the strains with uncommon antigenic composition can be natural reassortants. Fifty-two
percent of strains were isolated from Aedes communis and the associate species of mosquitoes, other hosts were
A. excrucians (8%), A. cantans (6.25%), A. flavescens (6.25%), A. ciprius (6.25%), A. punctor (4.5%), A. vexans
(4.5%), A. cataphylla (3.6%), A. nigripes (3.6%), and A. hexodontus (2.6%). The infection rate of mosquitoes was
0.009% in the tundra, 0.012% in forest-tundra, 0.01% in Northern taiga, 0.02% in Central taiga, 0.017% in
Southern taiga, 0.026% in forest-steppe, and 0.097% in steppe. The epidemic season is one month in the tundra
(from the beginning of July till the beginning of August), two months in Northern taiga (July-August), and three
months in Central taiga (from the second half of June till the beginning of September). The highest infection rate
of mosquitoes was observed at the end of the epidemic season in all regions. SSH strains prevailed to the East
from the Enisei river, whereas to the West and in the Subarctic regions INK virus predominated, SSH being rare; in
the taiga the distribution was quite the opposite. TAH virus was virtually absent. Human morbidity was observed
in all territories studied. The immune stratum of adult population is about 30% in the tundra and forest-tundra
and about 50% in Northern and Central taiga.