Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from Western Europe.

https://arctichealth.org/en/permalink/ahliterature265209

Author: Anne Karine Halse
 Martin Schlabach
 Jasmin K Schuster
 Kevin C Jones
 Eiliv Steinnes
 Knut Breivik

Source: Environ Pollut. 2015 Jan;196:21-8

Date: Jan-2015

Language: English

Publication Type: Article

Keywords: Chlorobenzenes - analysis
 Endosulfan - analogs & derivatives - analysis
 Environmental monitoring
 Europe
 Hydrocarbons, Chlorinated - analysis
 Norway
 Paraffin - analysis
 Soil - chemistry
 Soil Pollutants - analysis

Abstract: Soils are major reservoirs for many persistent organic pollutants (POPs). In this study, "newly" regulated POPs i.e. Sendosulfans (a-endosulfan, ß-endosulfan, endosulfan sulfate), pentachlorobenzene (PeCB), and short-chain chlorinated paraffins (SCCPs) were determined in background samples from woodland (WL) and grassland (GL) surface soil, collected along an existing latitudinal UK-Norway transect. Statistical analysis, complemented with plots showing the predicted equilibrium distribution and mobility potential, was then explored to discuss factors controlling their spatial distribution. SCCPs were detected with the highest average concentrations (35 ± 100 ng/g soil organic matter (SOM)), followed by Sendosulfans (3 ± 3 ng/g SOM) and PeCB (1 ± 1 ng/g SOM). PeCB and Sendosulfans share many similarities in their distribution in these background soils as well as with several legacy POPs. A steep decline in concentrations of SCCPs with increasing latitude indicates that their occurrence is dictated by proximity to source regions, while concentrations of Sendosulfans peaked in regions experiencing elevated precipitation rates.

PubMed ID: 25285612 View in PubMed
Indigenous 14C-phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and the United Kingdom.

https://arctichealth.org/en/permalink/ahliterature290355

Author: Uchechukwu V Okere
Jasmin K Schuster
Uchenna O Ogbonnaya
Kevin C Jones
Kirk T Semple

Author Affiliation: University of Derby, UK.

Date: Nov-15-2017

Language: English

Publication Type: Journal Article

Keywords: Biodegradation, Environmental Carbon Radioisotopes Environmental monitoring Forests Grassland Norway Phenanthrenes - analysis Soil - chemistry Soil Microbiology Soil Pollutants - analysis Time Factors United Kingdom

Abstract: In this study, the indigenous microbial mineralisation of 14C-phenanthrene in seven background soils (four from Norwegian woodland and three from the UK (two grasslands and one woodland)) was investigated. 7PAHs ranged from 16.39 to 285.54 ng g-1 dw soil. Lag phases (time before 14C-phenanthrene mineralisation reached 5%) were longer in all of the Norwegian soils and correlated positively with TOC, but negatively with 7PAHs and phenanthrene degraders for all soils. 14C-phenanthrene mineralisation in the soils varied due to physicochemical properties. The results show that indigenous microorganisms can adapt to 14C-phenanthrene mineralisation following diffuse PAH contamination. Considering the potential of soil as a secondary PAH source, these findings highlight the important role of indigenous microflora in the processing of PAHs in the environment.

PubMed ID: 29083422 View in PubMed