There is considered the history of the development of legislative requirements to the regulation of the quality of drinking water in different countries and international organizations during the period from 1912 to the present time. In terms of comparative analysis there is analyzed the current state of regulatory frameworks of the Russian Federation, WHO, EU, Finland, the UK, Singapore, Australia, Japan, China, Nigeria, the United States and Canada in the field of providing favorable conditions of population drinking water use. There has been noted the significant progress in standardization of the content of the biogenic elements and chemical pollution of drinking water in the absence of uniform requirements to the composition and properties of drinking water globally, that is bound to the need to take into account the national peculiarities of drinking water supply within the separate countries. As promising directions for improving regulation of drinking water quality there are noted: the development of new standards for prioritized water pollution, periodic review ofstandards after appearance of the new scientific data on the biological action of substances, the use of the concept of risk, the harmonization of the normative values and the assessment of the possibility of introduction into the practice the one more criterion of profitableness of population water use--the bioenergetic state of the water.
The Baltic Sea is one of the most eutrophied water bodies in northern Europe and more than 50% of its total anthropogenic waterborne phosphorus (P) and nitrogen (N) loads derive from agricultural sources. Sweden is the second largest contributor of waterborne N and the third largest contributor of waterborne P to the Baltic Sea. Horse farms now occupy almost 10% of Swedish agricultural land, but are not well investigated with regard to their environmental impact. In this study, potential P, N and carbon (C) leaching losses were measured from two representative horse paddock topsoils (0-20 cm; a clay and a loamy sand) following simulated rainfall events in the laboratory. Results showed that the leachate concentrations and net release of P, N and dissolved organic C (DOC) from paddock topsoils were highest in feeding and excretion areas and considerably higher from the loamy sand than the clay paddock topsoil. Leaching losses of dissolved reactive P (DRP) were significantly (p
The Water Safety Plan (WSP) methodology, which aims to enhance safety of drinking water supplies, has been recommended by the World Health Organization since 2004. WSPs are now used worldwide and are legally required in several countries. However, there is limited systematic evidence available demonstrating the effectiveness of WSPs on water quality and health. Iceland was one of the first countries to legislate the use of WSPs, enabling the analysis of more than a decade of data on impact of WSP. The objective was to determine the impact of WSP implementation on regulatory compliance, microbiological water quality, and incidence of clinical cases of diarrhea. Surveillance data on water quality and diarrhea were collected and analyzed. The results show that HPC (heterotrophic plate counts), representing microbiological growth in the water supply system, decreased statistically significant with fewer incidents of HPC exceeding 10 cfu per mL in samples following WSP implementation and noncompliance was also significantly reduced (p
Intestinal enterococci indicate the fecal contamination of bathing waters. This study defines the performance characteristics of the reference method ISO 7899-2:2000 with water samples collected from inland and coastal bathing areas in Finland. From a total of 341 bacterial isolates grown on Slanetz and Bartley medium, 63.6% were confirmed as intestinal enterococci on bile aesculin agar. The partial 16S rRNA gene sequences showed that Enterococcus faecium and Enterococcus faecalis clades accounted for 93.1% of the confirmed isolates. The range of the false positive and false negative rate of the ISO 7899-2 was 0.0-18.5% and 5.6-57.1%, respectively, being affected by the presumptive colony count on the membrane. The analysis of multiple sample volumes is proposed to reach 10-100 colonies per membrane when 47 mm diameter membranes are used to prevent overestimation of low counts and underestimation of the high counts.
[CHANGING OF PHYSICO-CHEMICAL PARAMETERS OF NON-CONTACT (ELECTROCHEMICAL) ACTIVATED DRINKING WATER IS ASSOCIATED WITH INDUCTION OF GENOMIC INSTABILITY OF CULTIVATED HUMAN BLOOD LYMPHOCYTES].
In the article there are presented data which are the fragment of large multidisciplinary study of genetic safety of non-contact electrochemically activated water (NAW). The aim of this study was the analysis of the relation of impacts of genomic instability (micronucleus test with cytochalasin B) detected in human blood cells, cultured in medias prepared on the base of these NAWs, with physical and chemical properties of these NaWs. In experiments there were used catholytes and anolytes obtained by activation of osmotic, tap and dining bottled water As a result of such activation, all waters were shown to acquire the ability to induce genomic instability in cellular cultures. Notably in cell cultures on catholytes and anolytes these effects differed between themselves and have been associated with different physical and chemical properties of the NAWs.
Bacteria, protozoa and viruses are ubiquitous in aquatic environments and may pose threats to water quality for both human and ecosystem health. Microbial risk assessment and management in the water sector is a focus of governmental regulation and scientific inquiry; however, stark gaps remain in their application and interpretation. This paper evaluates how water managers practice microbial risk assessment and management in two Canadian provinces (BC and Ontario). We assess three types of entities engaged in water management along the source-to-tap spectrum (watershed agencies, water utilities, and public health authorities). We analyze and compare the approaches used by these agencies to assess and manage microbial risk (including scope, frequency, and tools). We evaluate key similarities and differences, and situate them with respect to international best practices derived from literatures related to microbial risk assessment and management. We find considerable variability in microbial risk assessment frameworks and management tools in that approaches 1) vary between provinces; 2) vary within provinces and between similar types of agencies; 3) have limited focus on microbial risk assessment for ecosystem health and 4) diverge considerably from the literature on best practices. We find that risk assessments that are formalized, routine and applied system-wide (i.e. from source-to-tap) are limited. We identify key limitations of current testing methodologies and looking forward consider the outcomes of this research within the context of new developments in microbial water quality monitoring such as tests derived from genomics and metagenomics based research.
The used methodology of the scientific substantiation of indicators is in the establishment of the conformity of laws of vital activity of indicator and pathogenic microorganisms in the real conditions of the action of the complex of factors, including disinfecting agents. In the one water sample simultaneously there were determined both the general indicator (GICB), thermotolerant (TTCB), glucose positive (GPCB) coliform bacteria, E.coli. On the base of long-term research in the various regions of the Russian Federation, as well with bearing in mind the analysis of domestic and foreign data, comparing the water quality and the incidence of intestinal infections in population it is recommended to use the index of determination of the total number glucose positive coliform bacteria (GPCB), which brings together a much broader range of bacteria of the Enterobacteriaceae family in comparison with total coliform bacteria (TCB) and thermotolerant coliform bacteria (TTCB) and warrants the absence in the test volume of water as an indicator lactose positive (E.coli, TCB, TTCB) and pathogens (salmonella) and potentially pathogenic bacteria which do not ferment lactose. Proposed index of GPCB is shown to allow to assess epidemiological risks not only more accurate, but also more efficiently without increasing the cost performance of bacteriological research.
We examine factors that explain consumer spending on tap water substitutes using information from a national survey undertaken with a representative set of Canadian respondents. We develop a model to predict the percentage of households that undertake such spending for the purpose of reducing perceived health risks from tap water consumption. Using results from the model we estimate the magnitude of defensive expenditures to be over half a billion dollars (2010 US$) per year for Canada, as a whole. This is equivalent to approximately $48 per household per year or about $19 per person per year. Residents of Ontario, the province in which an Escherichia coli incident took place in 2000, have the highest willingness-to-pay of approximately $60 per household per year.
Safe drinking water is one of the fundaments of society and experience has shown that a holistic national framework is needed for its effective provision. A national framework should include legal requirements on water protection, surveillance on drinking water quality and performance of the water supply system, and systematic preventive management. Iceland has implemented these requirements into legislation. This case study analyzes the success and challenges encountered in implementing the legislation and provide recommendations on the main shortcomings identified through the Icelandic experience. The results of the analysis show that the national framework for safe drinking water is mostly in place in Iceland. The shortcomings include the need for both improved guidance and control by the central government; and for improved surveillance of the water supply system and implementation of the water safety plan by the Local Competent Authorities. Communication to the public and between stakeholders is also insufficient. There is also a deficiency in the national framework regarding small water supply systems that needs to be addressed. Other elements are largely in place or on track. Most of the lessons learned are transferable to other European countries where the legal system around water safety is built on a common foundation from EU directives. The lessons can also provide valuable insights into how to develop a national framework elsewhere.
By methods of atom-emission and mass spectrometry with inductively bonded argon plasma there was determined the content of 25 macro- and trace elements in tap cold drinking water used by the residents of the city of Magadan for food purposes and in hair samples of 30 young male Europeans aged of 17-23 years, who are the residents, of the city of Magadan. According to our data the content of 25 elements in drinking water conforms to standards, but that content of such essential elements as Co, Cr Cu, I, Mn, Na, Se, Zn is shown to be lower than referential indices. After boiling the water the concentration of trace elements is changed. The content of Cd, Cu, K, P Pb, Zn, Ni becomes lower significantly. In healthy young men aged of 17-23 years, from the number of natives Europeoids, residents of the North there was detected deficit of Co and I (86% and 62%, respectively), lower concentrations of Ca, Mg, Se, Zn (76%, 69%, 24%, 24%, respectively). The constant use by residents of the city of Magadan of ultrafresh brackish drinking water in food aims may be the one of the main reasons of the imbalance of macro- and micronutrients in the body, characterized by features of the so-called "northern" type with a marked deficiency of basic essential elements.