Humans and freshwater ecosystems have a long history of cohabitation. Today, nearly all major rivers of the world have an in-stream structure which changes water flow, substrate composition, vegetation, and fish assemblage composition. The realization of these effects and their subsequent impacts on population sustainability and conservation has led to a collective effort aimed to find ways to mitigate these impacts. Barrier removal has recently received greater interest as a potential solution to restore river connectivity, and reestablish high quality habitats, suitable for feeding, refuge and spawning of fish. In the present study, we present thirty years of data from electrofishing surveys obtained at two sites, both prior to and following the removal of a small-scale hydropower dam in Central Jutland, Denmark. We demonstrate that the dam removal has led to a dramatic increase in trout density, especially in young of the year. Surprisingly, we found that this increase was not just upstream of the barrier, where the ponded zone previously was, but also downstream of the barrier, despite little changes in habitat in that area. These findings suggest that barrier removal may be the soundest conservation option to reinstate fish population productivity.
A consistent methodology for assessing the accumulating effects of natural and manmade change on riverine systems has not been developed for a whole host of reasons including a lack of data, disagreement over core elements to consider, and complexity. Accumulated state assessments of aquatic systems is an integral component of watershed cumulative effects assessment. The Yukon River is the largest free flowing river in the world and is the fourth largest drainage basin in North America, draining 855,000 km(2) in Canada and the United States. Because of its remote location, it is considered pristine but little is known about its cumulative state. This review identified 7 "hot spot" areas in the Yukon River Basin including Lake Laberge, Yukon River at Dawson City, the Charley and Yukon River confluence, Porcupine and Yukon River confluence, Yukon River at the Dalton Highway Bridge, Tolovana River near Tolovana, and Tanana River at Fairbanks. Climate change, natural stressors, and anthropogenic stresses have resulted in accumulating changes including measurable levels of contaminants in surface waters and fish tissues, fish and human disease, changes in surface hydrology, as well as shifts in biogeochemical loads. This article is the first integrated accumulated state assessment for the Yukon River basin based on a literature review. It is the first part of a 2-part series. The second article (Dubé et al. 2013a, this issue) is a quantitative accumulated state assessment of the Yukon River Basin where hot spots and hot moments are assessed outside of a "normal" range of variability.
Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA)>2,4-dibromoanisole (2,4-DBA)»2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA>2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km2) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.
The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle1, 2. The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC1, 3-5. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.
A numerical model simulation has been used to predict extent and variability in the anthropogenic (129)I pollution in the Arctic Ocean and Nordic Seas region over a period of 100 years. The source function of (129)I used in the model is represented by a well-known history of discharges from the Sellafield and La Hague nuclear reprocessing facilities. The simulations suggest a fast transport and large inventory of the anthropogenic (129)I in the Arctic and North Atlantic Oceans. In a fictitious case of abrupt stop of the discharges, a rapid decline of inventories is observed in all compartments except the North Atlantic Ocean, the deep Nordic Seas and the deep Arctic Ocean. Within 15 years after the stop of releases, the model prediction indicates that near-equilibrium conditions are reached in all compartments.
Individual and organisational receptivity for change towards the use of sustainable stormwater management systems has been previously examined, but the significance of the different contexts for achieving this has been largely unexplored. This paper examines the significance of contexts associated to the actions to bring this about by proposing and evaluating an emerging framework based on two related receptivity theories: the individual or organisational approach and the contextual approach. Results from a Swedish national questionnaire with professionals in stormwater management have been used, together with a limited number of interviews to develop and understand the validity of the framework. The analysis has indicated that the respondents were professionally prepared for change (action) but not practically prepared due to inadequate supportive contexts. In response, a number of potential contexts associated to the necessary actions were identified. The framework was found to provide new insights into the influence of receptive contexts for a change in water management practice. These insights can be used by policy makers and others to better support the realization of professional openness for change and thus accelerate the process of change to sustainable stormwater practice.
An extensive amount of literature on linkages between the in-stream physical environment and river benthic macroinvertebrates reports a number of relationships across multiple spatial scales. We analyzed data on different spatial scales to elucidate the linkages between different measurements of hydromorphological degradation and commonly used macroinvertebrate indices. A regression analysis of 1049 sites from 3 countries revealed that the strongest relationship between a biotic metric--average score per taxon--and physiochemical variables (R2 = 0.61) was obtained with a multiple regression model that included concentration of total phosphorus and percent arable land in the catchment, as well as hydromorphological quality variables. Analyses of 3 data sets from streams primarily affected by hydromorphological degradation showed an overall weak relationship (max R2 = 0.25) with the River Habitat Survey data of 28 Swedish streams, whereas moderate (R2 approximately 0.43) relationships with more detailed measurements of morphology were found in 2 Danish studies (39 and 6 streams, respectively). Although evidence exists in the literature on the importance of physical features for in-stream biota in general and macroinvertebrates specifically, we found only relatively weak relationships between various measures of hydromorphological stress and commonly used macroinvertebrate assessment tools. We attribute this to a combination of factors, including 1) the mixed nature of pressures acting on the majority of river reaches, 2) scaling issues (spatial and temporal) when relating habitat surveys to macroinvertebrate assessments, and 3) the scope of commonly used macroinvertebrate assessment systems (mainly focusing on water chemistry perturbation, such as eutrophication and acidification). The need is urgent to develop refined and updated biological assessment systems targeting hydromorphological stress for the use of the European Water Framework Directive (WFD) and national water-related policies.
Department of Civil and Environmental Engineering, The Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7491 Trondheim, Norway E-mail: erle.kristvik@ntnu.no.
Climate change is expected to lead to higher precipitation amounts and intensities causing an increase of the risk for flooding and combined sewer overflows in urban areas. To cope with these changes, water managers are requesting practical tools that can facilitate adaptive planning. This study was carried out to investigate how recent developments in downscaling techniques can be used to assess the effects of adaptive measures. A combined spatial-temporal downscaling methodology using the Statistical DownScaling Model-Decision Centric (SDSM-DC) and the Generalized Extreme Value distribution was applied to project future precipitation in the city of Bergen, Norway. A raingarden was considered a potential adaptive measure, and its performance was assessed using the RECARGA simulation tool. The benefits and limitations of using the proposed method have been demonstrated and compared to current design practices in Norway. Large differences in the raingarden's performance with respect to percentage overflow and lag-time reduction were found for varying projections. This highlights the need for working with a range of possible futures. Further, it was found that Ksat was the determining factor for peak-flow reduction and that different values of Ksat had different benefits. Engineering flexible solutions by combining measures holding different characteristics will induce robust adaptation.
The present estimates of ice drift in the Arctic include utilization of satellite imagery data (special sensor microwave/imager) and a reconstruction of air pressure for the period 1899-1998. A significant part of the sea ice in the Arctic Ocean has its origin in the Kara Sea and melts in the Greenland and the Barents Sea (BS). Consequently there may be a particular risk of pollutants in the Kara Sea entering the food webs of the Greenland and BS. The ice export from the Kara Sea between 1988 and 1994 was about 208,000 km2 (154 km3) per year. The import of ice into the BS was during the same period 161,000 km2 (183 km3) per year while the ice drift through the Fram Strait into the Greenland Sea was 583,000 km2 (1859 km3) per year. Ice which formed adjacent to the Ob and Yenisey rivers in early January, drifted into the BS within two years (with a probability of about 50%.
Fossil evidence suggests that the seastar genus Asterias arrived in the North Atlantic during the trans-Arctic interchange around 3.5 Ma. Previous genetic and morphological studies of the two species found in the Atlantic today suggested two possible scenarios for the speciation of A. rubens and A. forbesi. Through phylogenetic and population genetic analysis of data from a portion of the cytochrome oxidase I mitochondrial gene and a fragment of the ribosomal internal transcribed spacer region, I show that the formation of the Labrador Current 3.0 Ma was probably responsible for the initial vicariance of North Atlantic Asterias populations. Subsequent adaptive evolution in A. forbesi was then possible in isolation from the European species A. rubens. The contact zone between these two species formed recently, possibly due to a Holocene founding event of A. rubens in New England and the Canadian Maritimes.