Skip header and navigation

Refine By

87 records – page 1 of 9.

Antibody-induced restriction of viral gene expression in measles encephalitis in rats.

https://arctichealth.org/en/permalink/ahliterature57791
Source
J Virol. 1990 Feb;64(2):706-13
Publication Type
Article
Date
Feb-1990
Author
U G Liebert
S. Schneider-Schaulies
K. Baczko
V. ter Meulen
Author Affiliation
Institut für Virologie und Immunbiologie, Universität Würzburg, Federal Republic of Germany.
Source
J Virol. 1990 Feb;64(2):706-13
Date
Feb-1990
Language
English
Publication Type
Article
Keywords
Animals
Animals, Newborn
Antibodies, Monoclonal - immunology
Antibody formation
Blotting, Northern
Brain - microbiology
Encephalitis - immunology - microbiology
Female
Gene Expression Regulation, Viral
Genes, Viral
Measles - immunology
Measles virus - genetics - immunology - physiology
Nucleic Acid Hybridization
Pregnancy
RNA Probes
RNA, Messenger - analysis - genetics
RNA, Viral - isolation & purification
Rats
Rats, Inbred BN
Rats, Inbred Lew
Research Support, Non-U.S. Gov't
Spinal Cord - microbiology
Viral Structural Proteins - immunology
Virus Replication
Abstract
After infection with the neurotropic CAM/RBH measles virus (MV) strain, newborn Lewis rats succumb to an acute necrotizing encephalopathy. Passive transfer of neutralizing monoclonal antibodies directed against MV hemagglutinin prevented this disease process. Instead, either an antibody-induced acute or subacute measles encephalitis developed after a prolonged incubation period with a restricted expression of MV structural proteins. The molecular biological analysis of MV gene expression in brain tissue of rats treated with MV-neutralizing antibodies revealed a transcriptional restriction of viral mRNAs, particularly for the envelope proteins, leading to a steep expression gradient. Based on in situ hybridization, it was concluded that the efficiency of transcription of viral genes at the single-cell level is reduced compared with that of controls. Passive immunization with monoclonal antibodies directed against other MV structural proteins proved to be ineffective. Similar results were obtained in MV-infected weanling Brown Norway rats. These rats developed a clinically silent encephalitis in the presence of high titers of neutralizing antibodies. In such animals, a pronounced attenuation of the viral gene transcription was observed. These findings indicated that neutralizing antibodies directed against a restricted set of specific antigenic sites on the viral hemagglutinin protein expressed on cell membranes exert a modulating effect on the viral gene expression at the level of transcription. This phenomenon contributes to the switch from the acute cytopathic effect to a persistent infection in the central nervous system.
PubMed ID
2296081 View in PubMed
Less detail

Antigen-specific beta-chemokine production and CD8 T-cell noncytotoxic antiviral activity in HIV-2-infected individuals.

https://arctichealth.org/en/permalink/ahliterature7177
Source
Scand J Immunol. 2005 Jan;61(1):63-71
Publication Type
Article
Date
Jan-2005
Author
R K S Ahmed
H. Norrgren
Z. da Silva
A. Blaxhult
E-L Fredriksson
G. Biberfeld
S. Andersson
R. Thorstensson
Author Affiliation
Tumorbiology Center, Karolinska Institute, Solna, Sweden. raija.ahmed@smi.ki.se
Source
Scand J Immunol. 2005 Jan;61(1):63-71
Date
Jan-2005
Language
English
Publication Type
Article
Keywords
Adult
CD8-Positive T-Lymphocytes - immunology
Chemokines, CC - biosynthesis
Comparative Study
Female
Guinea-Bissau
HIV Antigens
HIV Infections - immunology - virology
HIV-1 - immunology - pathogenicity - physiology
HIV-2 - immunology - pathogenicity - physiology
Humans
In Vitro
Macrophage Inflammatory Protein-1 - biosynthesis
Male
Middle Aged
RANTES - biosynthesis
Research Support, Non-U.S. Gov't
Sweden
Virus Replication
Abstract
Human immunodeficiency virus-2 (HIV-2) is less pathogenic than HIV-1, and the disease progression in HIV-2-infected individuals seems to be similar to that seen in HIV-1-infected long-term nonprogressors. Cell-mediated immune responses and the production of noncytotoxic CD8+ T-cell antiviral factors (CAF) and beta-chemokines have been correlated to protection against HIV-1 and associated with asymptomatic infection and slower disease progression. We investigated the antigen-induced beta-chemokine production in HIV-2-infected patients living in Sweden and in Guinea-Bissau. We also compared in vitro CD8+ T-cell-mediated noncytotoxic antiviral activity against beta-chemokine-sensitive R5 virus (HIV-1Bal) and beta-chemokine-insensitive X4 virus (HIV-1IIIB) in HIV-2-infected patients with that in HIV-1-infected patients. HIV-2-specific beta-chemokine production was demonstrated in a majority of the HIV-2-infected subjects. CD8+ T cells of both HIV-1 and HIV-2-infected individuals suppressed R5 virus replication in vitro in a similar manner, while the inhibition of X4 virus replication seemed to be more frequent and of a higher magnitude among HIV-2-infected patients compared to HIV-1-infected subjects. Taken together, our results indicate that the production of CD8+ T-cell noncytotoxic antiviral factors may contribute to the low transmission of the virus and slower disease progression in HIV-2-infected patients.
PubMed ID
15644124 View in PubMed
Less detail

[Characteristics of the causative agents of the influenza A (H3N2) epidemic in Leningrad in 1983].

https://arctichealth.org/en/permalink/ahliterature240581
Source
Vopr Virusol. 1984 May-Jun;29(3):286-90
Publication Type
Article
Author
N A Ivanova
V K Kudriavtseva
G N Nevedomskaia
T A Kramskaia
L Iu Taros
Source
Vopr Virusol. 1984 May-Jun;29(3):286-90
Language
Russian
Publication Type
Article
Keywords
Animals
Antigens, Viral - analysis
Child
Child, Preschool
Disease Outbreaks
Genetic Variation
Hemagglutination inhibition tests
Humans
Immunization
Influenza A Virus, H3N2 Subtype
Influenza A virus - immunology
Influenza, Human - epidemiology - microbiology
Lung - microbiology
Mice
Neuraminidase - antagonists & inhibitors
Rats
Russia
Urban Population
Virus Replication
Abstract
Investigation of influenza A (H3N2) epidemic of 1983 in Leningrad revealed simultaneous circulation of 3 antigenic variants similar to A/Bangkok/1/79, A/Bangkok/2/79, and A/Philippines/2/82 with significant predominance of the first antigenic variant. The viruses related to A/Philippines/2/82 comprising one-third of all isolations produced antibodies of a wide spectrum unlike the other two variants whose antisera neutralize actively the homologous virus only. The possibility of selecting epidemic strains of the A/Philippines/2/82 variety as vaccine strain candidates is discussed.
PubMed ID
6235673 View in PubMed
Less detail

[Characteristics of the reasons for the varying epidemic manifestation of tick-borne encephalitis foci in western Siberia and the Far East]

https://arctichealth.org/en/permalink/ahliterature57869
Source
Zh Mikrobiol Epidemiol Immunobiol. 1984 Apr;(4):46-9
Publication Type
Article
Date
Apr-1984
Author
V Ia Pustovalova
A A Katin
Source
Zh Mikrobiol Epidemiol Immunobiol. 1984 Apr;(4):46-9
Date
Apr-1984
Language
Russian
Publication Type
Article
Keywords
Animals
Comparative Study
Disease Outbreaks - epidemiology
Disease Reservoirs
Encephalitis Viruses, Tick-Borne - isolation & purification - pathogenicity
Encephalitis, Tick-Borne - epidemiology - microbiology
English Abstract
Humans
Mice
Siberia
Ticks - microbiology
Virulence
Virus Replication
Abstract
Viral strains from the foci of tick-borne encephalitis in Western Siberia and the Far East, producing the disease which takes the clinical course of different severity, have been shown to possess similar biological properties. A high mortality rate in the foci of tick-borne encephalitis in the Primorye Territory is the consequence of the weak latent immunization of the population, which is due, in its turn, to some specific features of the epizootic process in this area.
PubMed ID
6741356 View in PubMed
Less detail

Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses.

https://arctichealth.org/en/permalink/ahliterature289926
Source
Viruses. 2017 06 02; 9(6):
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Date
06-02-2017
Author
Douwe S Maat
Tristan Biggs
Claire Evans
Judith D L van Bleijswijk
Nicole N van der Wel
Bas E Dutilh
Corina P D Brussaard
Author Affiliation
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands. douwe.maat@nioz.nl.
Source
Viruses. 2017 06 02; 9(6):
Date
06-02-2017
Language
English
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Keywords
Arctic Regions
Chlorophyta - virology
DNA, Viral - genetics
Phycodnaviridae - genetics - physiology - radiation effects
Temperature
Virus Replication - radiation effects
Abstract
Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming).
Notes
Cites: Environ Microbiol. 2006 Jun;8(6):1115-21 PMID 16689732
Cites: ISME J. 2017 Mar;11(3):601-612 PMID 28085157
Cites: Mol Syst Biol. 2011 Oct 11;7:539 PMID 21988835
Cites: Nucleic Acids Res. 2004 Feb 25;32(4):1363-71 PMID 14985472
Cites: ISME J. 2014 Oct;8(10):1953-61 PMID 24553471
Cites: J Eukaryot Microbiol. 2014 Nov-Dec;61(6):569-79 PMID 24996010
Cites: Nat Rev Microbiol. 2007 Oct;5(10):801-12 PMID 17853907
Cites: Appl Environ Microbiol. 2004 Mar;70(3):1506-13 PMID 15006772
Cites: Appl Environ Microbiol. 2014 May;80(10):3150-60 PMID 24632251
Cites: ISME J. 2013 Sep;7(9):1678-95 PMID 23575371
Cites: Virology. 1996 May 1;219(1):170-8 PMID 8623526
Cites: ISME J. 2017 Jun;11(6):1372-1385 PMID 28267153
Cites: ISME J. 2012 Aug;6(8):1480-98 PMID 22278671
Cites: Appl Microbiol. 1967 Jan;15(1):198 PMID 6031434
Cites: Can J Microbiol. 1978 Mar;24(3):321-4 PMID 647480
Cites: Curr Top Microbiol Immunol. 2009;328:1-42 PMID 19216434
Cites: Appl Environ Microbiol. 1999 Jan;65(1):45-52 PMID 9872758
Cites: J Phycol. 2013 Oct;49(5):996-1010 PMID 27007321
Cites: Appl Environ Microbiol. 1995 Aug;61(8):3088-91 PMID 16535105
Cites: Mol Biol Evol. 2006 Jan;23(1):23-9 PMID 16120798
Cites: Environ Microbiol Rep. 2015 Oct;7(5):765-73 PMID 26081716
Cites: PLoS One. 2016 Feb 19;11(2):e0148512 PMID 26895333
Cites: Appl Environ Microbiol. 2013 Oct;79(20):6253-9 PMID 23913432
Cites: J Phycol. 2008 Aug;44(4):902-8 PMID 27041608
Cites: BMC Genomics. 2016 Mar 31;17 :267 PMID 27029936
Cites: Proc Soc Exp Biol Med. 1961 Apr;106:736-8 PMID 13698695
Cites: Appl Environ Microbiol. 2000 Nov;66(11):4916-20 PMID 11055943
Cites: Extremophiles. 2003 Oct;7(5):377-84 PMID 12820036
Cites: Can J Microbiol. 1962 Apr;8:229-39 PMID 13902807
Cites: Appl Environ Microbiol. 2005 Jul;71(7):3599-607 PMID 16000767
Cites: Bioinformatics. 2014 May 1;30(9):1312-3 PMID 24451623
Cites: J Gen Virol. 2006 May;87(Pt 5):1375-83 PMID 16603541
Cites: ISME J. 2016 Jul;10 (7):1602-12 PMID 26943625
Cites: Appl Environ Microbiol. 2004 Jul;70(7):4064-72 PMID 15240284
Cites: J Mol Biol. 1990 Oct 5;215(3):403-10 PMID 2231712
Cites: Extremophiles. 2014 Jan;18(1):121-30 PMID 24297705
Cites: FEMS Microbiol Ecol. 2014 Sep;89(3):495-515 PMID 24754794
Cites: Science. 2015 May 22;348(6237):1261359 PMID 25999513
Cites: J Virol. 1974 Sep;14(3):689-99 PMID 4211861
Cites: EMBO Rep. 2006 Apr;7(4):385-9 PMID 16585939
Cites: Virology. 2004 Feb 20;319(2):280-91 PMID 14980488
Cites: Science. 2009 Apr 10;324(5924):268-72 PMID 19359590
Cites: Bioinformatics. 2009 Jul 15;25(14):1754-60 PMID 19451168
Cites: Environ Microbiol. 2008 Sep;10(9):2433-43 PMID 18537812
Cites: Syst Biol. 2010 May;59(3):307-21 PMID 20525638
Cites: Science. 2009 Oct 23;326(5952):539 PMID 19900890
Cites: Virology. 2005 Oct 10;341(1):80-90 PMID 16081120
PubMed ID
28574420 View in PubMed
Less detail

Characterization in vitro and in vivo of pandemic (H1N1) 2009 influenza viruses isolated from patients.

https://arctichealth.org/en/permalink/ahliterature123224
Source
J Virol. 2012 Sep;86(17):9361-8
Publication Type
Article
Date
Sep-2012
Author
Tokiko Watanabe
Masaki Imai
Shinji Watanabe
Kyoko Shinya
Masato Hatta
Chengjun Li
Gabriele Neumann
Makoto Ozawa
Anthony Hanson
Gongxun Zhong
Satoshi Fukuyama
Eiryo Kawakami
Heather A Simmons
Daniel Schenkman
Kevin Brunner
Saverio V Capuano
Jason T Weinfurter
Anette Kilander
Susanne G Dudman
M. Suresh
Olav Hungnes
Thomas C Friedrich
Yoshihiro Kawaoka
Author Affiliation
Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA. twatanabe@svm.vetmed.wisc.edu
Source
J Virol. 2012 Sep;86(17):9361-8
Date
Sep-2012
Language
English
Publication Type
Article
Keywords
Amino Acid Sequence
Animals
Cell Line
Female
Ferrets
Humans
Influenza A Virus, H1N1 Subtype - genetics - isolation & purification - pathogenicity - physiology
Influenza, Human - epidemiology - virology
Macaca
Molecular Sequence Data
Norway - epidemiology
Pandemics
Viral Proteins - genetics - metabolism
Virulence
Virus Replication
Abstract
The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. Molecular evolutionary analyses of the 2009 pandemic influenza A H1N1 [A(H1N1)pdm09] virus revealed two major clusters, cluster I and cluster II. Although the pathogenicity of viruses belonging to cluster I, which became extinct by the end of 2009, has been examined in a nonhuman primate model, the pathogenic potential of viruses belonging to cluster II, which has spread more widely in the world, has not been studied in this animal model. Here, we characterized two Norwegian isolates belonging to cluster II, namely, A/Norway/3568/2009 (Norway3568) and A/Norway/3487-2/2009 (Norway3487), which caused distinct clinical symptoms, despite their genetic similarity. We observed more efficient replication in cultured cells and delayed virus clearance from ferret respiratory organs for Norway3487 virus, which was isolated from a severe case, compared with the efficiency of replication and time of clearance of Norway3568 virus, which was isolated from a mild case. Moreover, Norway3487 virus to some extent caused more severe lung damage in nonhuman primates than did Norway3568 virus. Our data suggest that the distinct replicative and pathogenic potentials of these two viruses may result from differences in their biological properties (e.g., the receptor-binding specificity of hemagglutinin and viral polymerase activity).
Notes
Cites: PLoS One. 2010;5(6):e1105720548780
Cites: J Virol. 2010 Nov;84(22):12069-7420826688
Cites: J Virol. 2010 Nov;84(22):11802-1320844044
Cites: Vet Pathol. 2010 Nov;47(6):1040-720647595
Cites: Virol J. 2010;7:32521083933
Cites: J Virol. 2011 Feb;85(3):1214-2321084481
Cites: Infect Genet Evol. 2011 Jul;11(5):803-1121382522
Cites: PLoS Pathog. 2011 Nov;7(11):e100238122102819
Cites: J Virol. 2011 Dec;85(24):13195-20321937653
Cites: J Virol. 2000 Sep;74(18):8502-1210954551
Cites: J Virol. 2001 Jul;75(14):6687-9111413336
Cites: Science. 2001 Sep 7;293(5536):1840-211546875
Cites: Nat Med. 2002 Sep;8(9):950-412195436
Cites: Am J Respir Cell Mol Biol. 2004 Jun;30(6):830-614754758
Cites: J Appl Physiol (1985). 2004 Nov;97(5):1605-1715475552
Cites: Proc Natl Acad Sci U S A. 1988 Jan;85(2):324-82829180
Cites: J Virol. 1990 Apr;64(4):1808-112319652
Cites: J Virol. 1993 Apr;67(4):1761-48445709
Cites: Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-5010430945
Cites: Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17033-815563589
Cites: J Virol. 2005 Sep;79(18):12058-6416140781
Cites: Science. 2006 Mar 17;311(5767):1576-8016439620
Cites: Nature. 2006 Mar 23;440(7083):435-616554799
Cites: J Virol. 2007 Jan;81(1):30-4117050598
Cites: Nature. 2007 Jan 18;445(7125):319-2317230189
Cites: PLoS Pathog. 2007 Oct 5;3(10):1414-2117922571
Cites: Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4381-618334632
Cites: PLoS Pathog. 2008 Feb 8;4(2):e1118248089
Cites: Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3455-6019218453
Cites: Nature. 2009 Jun 25;459(7250):1122-519516283
Cites: N Engl J Med. 2009 Jul 9;361(2):115-919474418
Cites: Science. 2009 Jul 10;325(5937):197-20119465683
Cites: Nature. 2009 Aug 20;460(7258):1021-519672242
Cites: Euro Surveill. 2009;14(46). pii: 1940919941799
Cites: Virol J. 2009;6:20719930669
Cites: N Engl J Med. 2010 May 6;362(18):1708-1920445182
PubMed ID
22718834 View in PubMed
Less detail

Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis.

https://arctichealth.org/en/permalink/ahliterature187382
Source
J Virol. 2003 Jan;77(1):25-36
Publication Type
Article
Date
Jan-2003
Author
T S Gritsun
T V Frolova
A I Zhankov
M. Armesto
S L Turner
M P Frolova
V V Pogodina
V A Lashkevich
E A Gould
Author Affiliation
CEH Institute of Virology and Environmental Microbiology, Oxford OX1 3SR, United Kingdom.
Source
J Virol. 2003 Jan;77(1):25-36
Date
Jan-2003
Language
English
Publication Type
Article
Keywords
3' Untranslated Regions - chemistry
Animals
Chronic Disease
Cricetinae
Encephalitis Viruses, Tick-Borne - classification - isolation & purification - pathogenicity
Encephalitis, Tick-Borne - virology
Humans
Mesocricetus
Mice
Phylogeny
RNA, Viral - chemistry
Siberia
Viral Nonstructural Proteins - analysis - chemistry
Virulence
Virus Replication
Abstract
A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T(277)-->V and E(279)-->G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis.
Notes
Cites: J Med Virol. 1995 Apr;45(4):451-617666046
Cites: Virology. 1995 Oct 20;213(1):169-787483260
Cites: Virology. 1995 Dec 20;214(2):611-88553563
Cites: J Gen Virol. 1996 May;77 ( Pt 5):1035-428609469
Cites: J Virol. 1996 Jul;70(7):4549-578676481
Cites: J Virol. 1996 Nov;70(11):8142-78892942
Cites: Comput Appl Biosci. 1996 Aug;12(4):357-88902363
Cites: Nucleic Acids Res. 1997 Mar 15;25(6):1194-2029092629
Cites: Virus Res. 1997 May;49(1):27-399178494
Cites: RNA. 1997 Jul;3(7):779-919214660
Cites: Nucleic Acids Res. 1997 Dec 15;25(24):4876-829396791
Cites: J Virol. 1998 Mar;72(3):2132-409499069
Cites: J Gen Virol. 1998 May;79 ( Pt 5):981-89603312
Cites: Vopr Virusol. 1998 Jul-Aug;43(4):182-69791885
Cites: J Gen Virol. 1998 Nov;79 ( Pt 11):2631-99820138
Cites: Virus Res. 1992 Dec;26(3):213-291337231
Cites: J Gen Virol. 1993 Feb;74 ( Pt 2):287-918381470
Cites: J Virol. 1993 Mar;67(3):1672-58437237
Cites: J Virol Methods. 1998 Dec;76(1-2):109-209923745
Cites: J Gen Virol. 1999 Jan;80 ( Pt 1):179-859934700
Cites: J Virol. 1999 Mar;73(3):2547-519971841
Cites: Virology. 1999 Apr 25;257(1):156-6710208929
Cites: J Virol. 1999 Jul;73(7):6104-1010364366
Cites: Virology. 1999 Nov 10;264(1):66-7510544130
Cites: Neurosci Behav Physiol. 1999 Jul-Aug;29(4):449-5310582230
Cites: Brain Res Bull. 2000 Sep 15;53(2):141-611044589
Cites: J Gen Virol. 2001 Jun;82(Pt 6):1319-2811369875
Cites: J Gen Virol. 2001 Jul;82(Pt 7):1667-7511413378
Cites: Int J Exp Pathol. 2001 Apr;82(2):65-7611454099
Cites: Virology. 2001 Aug 1;286(2):328-3511485400
Cites: Bioinformatics. 2001 Dec;17(12):1244-511751241
Cites: Vopr Virusol. 1965 Jul-Aug;10(4):454-625874473
Cites: Nature. 1970 Aug 15;227(5259):680-55432063
Cites: Nature. 1979 Nov 29;282(5738):509-11503230
Cites: Vopr Virusol. 1981 Nov-Dec;(6):741-67336697
Cites: Vopr Virusol. 1982 May-Jun;27(3):320-36289529
Cites: J Gen Virol. 1989 Aug;70 ( Pt 8):2209-142549188
Cites: Virology. 1989 Nov;173(1):291-3012554575
Cites: Vopr Virusol. 1989 Jul-Aug;34(4):449-542588554
Cites: Virology. 1990 Jan;174(1):250-632136778
Cites: Annu Rev Microbiol. 1990;44:649-882174669
Cites: Virology. 1991 Jan;180(1):411-51845834
Cites: J Gen Virol. 1991 Feb;72 ( Pt 2):333-81847173
Cites: Vopr Virusol. 1990 Nov-Dec;35(6):471-42150577
Cites: Arch Virol. 1991;117(3-4):279-861826827
Cites: Mol Gen Mikrobiol Virusol. 1991 Apr;(4):23-91857376
Cites: Anal Biochem. 1991 Aug 15;197(1):25-331952072
Cites: J Gen Virol. 1992 Jan;73 ( Pt 1):207-121339466
Cites: J Gen Virol. 1992 Aug;73 ( Pt 8):2155-91645154
Cites: J Gen Virol. 1993 Jan;74 ( Pt 1):109-148380831
Cites: Virus Res. 1993 Feb;27(2):201-98384766
Cites: Virology. 1993 May;194(1):173-848097605
Cites: Virology. 1993 Jun;194(2):769-808389081
Cites: Vopr Virusol. 1982 Jul-Aug;27(4):473-96753337
Cites: Vopr Virusol. 1982 Sep-Oct;27(5):66-737147906
Cites: Acta Virol. 1982 Sep;26(5):362-86128904
Cites: J Hyg (Lond). 1982 Dec;89(3):355-647153506
Cites: J Gen Virol. 1983 Jun;64 (Pt 6):1255-626854270
Cites: Vopr Virusol. 1983 Jul-Aug;28(4):96-1006636703
Cites: Vopr Virusol. 1984 Jan-Feb;29(1):103-86710973
Cites: Vopr Virusol. 1984 Nov-Dec;29(6):740-66152087
Cites: Vopr Virusol. 1985 Jan-Feb;30(1):86-93993006
Cites: J Gen Virol. 1985 Aug;66 ( Pt 8):1831-72991448
Cites: J Immunol. 1985 Oct;135(4):2805-94031501
Cites: J Gen Virol. 1985 Dec;66 ( Pt 12):2523-312999305
Cites: Vopr Virusol. 1985 Sep-Oct;30(5):610-44072163
Cites: J Gen Virol. 1986 Mar;67 ( Pt 3):591-53950582
Cites: Adv Virus Res. 1986;31:103-682428213
Cites: Zh Nevropatol Psikhiatr Im S S Korsakova. 1987;87(2):170-83033955
Cites: J Gen Virol. 1988 Jan;69 ( Pt 1):23-342826667
Cites: Virology. 1988 Jan;162(1):187-962827377
Cites: Vopr Virusol. 1988 Jul-Aug;33(4):448-522461617
Cites: Virology. 1989 May;170(1):299-3012541547
Cites: J Gen Virol. 1989 Jun;70 ( Pt 6):1605-82543793
Cites: Virus Res. 1993 Nov;30(2):129-448249442
Cites: J Gen Virol. 1994 May;75 ( Pt 5):1183-78176380
Cites: Ann Neurol. 1994;35 Suppl:S23-78185292
Cites: Arch Virol Suppl. 1994;9:339-487913359
Cites: J Virol. 1995 Feb;69(2):695-7007529335
Cites: Curr Opin Genet Dev. 1995 Feb;5(1):105-117749317
Cites: Nature. 1995 May 25;375(6529):291-87753193
Cites: Virus Res. 1995 Mar;35(3):307-217785318
PubMed ID
12477807 View in PubMed
Less detail

[Comparative evaluation of Leningrad-3 mumps vaccine virus neurovirulence in a neonatal rat model].

https://arctichealth.org/en/permalink/ahliterature131526
Source
Vopr Virusol. 2011 Jul-Aug;56(4):30-3
Publication Type
Article
Author
G M Ignat'ev
E V Otrashevskaia
S A Rubin
Source
Vopr Virusol. 2011 Jul-Aug;56(4):30-3
Language
Russian
Publication Type
Article
Keywords
Animals
Brain - pathology - virology
Cercopithecus aethiops
Humans
Models, Animal
Mumps - immunology - virology
Mumps Vaccine - administration & dosage - adverse effects - immunology
Mumps virus - immunology - pathogenicity
Rats
Reproducibility of Results
Russia
Virology - methods
Virulence - immunology
Virus Replication - immunology
Abstract
The neurovirulence and replication potential of several mumps virus strains, including Leningrad-3 mumps vaccine virus (FSUE SIC "Microgen", Russia) and wild type strains isolated in the Novosibirsk Region (Russia), were assessed in rat tests. The mean neurovirulence scores of the Leningrad-3 virus (
PubMed ID
21899067 View in PubMed
Less detail

87 records – page 1 of 9.