Skip header and navigation

Refine By

5 records – page 1 of 1.

1H-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents.

https://arctichealth.org/en/permalink/ahliterature273208
Source
PLoS One. 2015;10(8):e0135018
Publication Type
Article
Date
2015
Author
Cilius Esmann Fonvig
Elizaveta Chabanova
Ehm Astrid Andersson
Johanne Dam Ohrt
Oluf Pedersen
Torben Hansen
Henrik S Thomsen
Jens-Christian Holm
Source
PLoS One. 2015;10(8):e0135018
Date
2015
Language
English
Publication Type
Article
Keywords
Adolescent
Anthropometry
Blood Glucose - analysis
Blood pressure
Body mass index
Body Weight
Cardiovascular Diseases - physiopathology
Child
Cross-Sectional Studies
Denmark
Dyslipidemias - blood
Fatty Liver - pathology
Female
Humans
Insulin - blood
Insulin Resistance
Intra-Abdominal Fat - pathology
Linear Models
Lipids - blood
Liver - metabolism - pathology
Male
Muscles - pathology
Overweight
Pediatric Obesity - blood - pathology
Proton Magnetic Resonance Spectroscopy
Puberty
Sex Factors
Subcutaneous Fat - pathology
Abstract
This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children.
Fasting plasma glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8-18 years.
In 287 overweight/obese children, the prevalences of hepatic and muscular steatosis were 31% and 68%, respectively, whereas the prevalences in 40 lean children were 3% and 10%, respectively. A multiple regression analysis adjusted for age, sex, body mass index z-score (BMI SDS), and pubertal development showed that the OR of exhibiting dyslipidemia was 4.2 (95%CI: [1.8; 10.2], p = 0.0009) when hepatic steatosis was present. Comparing the simultaneous presence of hepatic and muscular steatosis with no presence of steatosis, the OR of exhibiting dyslipidemia was 5.8 (95%CI: [2.0; 18.6], p = 0.002). No significant associations between muscle fat and dyslipidemia, impaired fasting glucose, or blood pressure were observed. Liver and muscle fat, adjusted for age, sex, BMI SDS, and pubertal development, associated to BMI SDS and glycosylated hemoglobin, while only liver fat associated to visceral and subcutaneous adipose tissue and intramyocellular lipid associated inversely to high density lipoprotein cholesterol.
Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased cardiovascular disease risk.
Notes
Cites: Child Obes. 2012 Dec;8(6):533-4123181919
Cites: Int J Pediatr Obes. 2011 Aug;6(3-4):188-9621529264
Cites: Int J Obes (Lond). 2014 Jan;38(1):40-523828099
Cites: Pediatr Diabetes. 2014 May;15(3):151-6124754463
Cites: Semin Liver Dis. 2001;21(1):3-1611296695
Cites: Pediatr Clin North Am. 2011 Dec;58(6):1375-92, x22093857
Cites: Obesity (Silver Spring). 2012 Feb;20(2):371-521869763
Cites: AJR Am J Roentgenol. 2012 Jul;199(1):2-722733887
Cites: J Clin Endocrinol Metab. 2012 Jul;97(7):E1099-10522508709
Cites: Nutr Metab Cardiovasc Dis. 2009 Feb;19(2):146-5219171470
Cites: Pediatr Diabetes. 2014 Sep;15 Suppl 20:4-1725182305
Cites: Int J Obes Relat Metab Disord. 2001 Feb;25(2):177-8411410817
Cites: J Clin Endocrinol Metab. 2001 Dec;86(12):5755-6111739435
Cites: Diabetes. 2002 Apr;51(4):1022-711916921
Cites: Circulation. 2003 Mar 25;107(11):1562-612654618
Cites: Lancet. 2003 Sep 20;362(9388):951-714511928
Cites: Pediatrics. 2004 Aug;114(2 Suppl 4th Report):555-7615286277
Cites: Int J Obes Relat Metab Disord. 2004 Oct;28(10):1257-6315278103
Cites: Nutr Rev. 1981 Feb;39(2):43-557010232
Cites: Stat Med. 1992 Jul;11(10):1305-191518992
Cites: Am J Clin Nutr. 1993 Oct;58(4):463-78379501
Cites: Diabetes. 1997 Jun;46(6):983-89166669
Cites: Diabetologia. 1999 Jan;42(1):113-610027589
Cites: Diabetes. 1999 Oct;48(10):2039-4410512371
Cites: Obesity (Silver Spring). 2006 Mar;14(3):357-6716648604
Cites: Pediatrics. 2006 Oct;118(4):1388-9317015527
Cites: Diabetes Care. 2007 Jan;30(1):89-9417192339
Cites: Eur J Clin Nutr. 2007 Jul;61(7):877-8317151586
Cites: Circulation. 2008 Jul 15;118(3):277-8318591439
Cites: Diabetes Care. 2009 Feb;32(2):342-718957533
Cites: J Clin Endocrinol Metab. 2009 Sep;94(9):3440-719531593
Cites: Am J Epidemiol. 2010 Jun 1;171(11):1195-20220457571
Cites: Eur J Endocrinol. 2010 Sep;163(3):413-920584996
Cites: J Clin Endocrinol Metab. 2010 Dec;95(12):5189-9820829185
Cites: J Clin Res Pediatr Endocrinol. 2010;2(3):100-621274322
Cites: Diabetologia. 2011 Apr;54(4):869-7521181394
Cites: Abdom Imaging. 2013 Apr;38(2):315-922736224
PubMed ID
26252778 View in PubMed
Less detail

Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects--a monozygotic twin study.

https://arctichealth.org/en/permalink/ahliterature165168
Source
PLoS One. 2007;2(2):e218
Publication Type
Article
Date
2007
Author
Kirsi H Pietiläinen
Marko Sysi-Aho
Aila Rissanen
Tuulikki Seppänen-Laakso
Hannele Yki-Järvinen
Jaakko Kaprio
Matej Oresic
Author Affiliation
Obesity Research Unit, Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland.
Source
PLoS One. 2007;2(2):e218
Date
2007
Language
English
Publication Type
Article
Keywords
Abdominal Fat - pathology
Adult
Body Composition
Body mass index
Diet Records
Female
Finland
Humans
Insulin Resistance
Lipids - blood
Lysophosphatidylcholines - blood
Magnetic Resonance Imaging
Male
Metabolomics
Obesity - blood - epidemiology - genetics - pathology
Smoking - epidemiology
Sphingomyelins - blood
Subcutaneous Fat - pathology
Twins, Monozygotic - genetics
Young Adult
Abstract
Both genetic and environmental factors are involved in the etiology of obesity and the associated lipid disturbances. We determined whether acquired obesity is associated with changes in global serum lipid profiles independent of genetic factors in young adult monozygotic (MZ) twins. 14 healthy MZ pairs discordant for obesity (10 to 25 kg weight difference) and ten weight concordant control pairs aged 24-27 years were identified from a large population-based study. Insulin sensitivity was assessed by the euglycemic clamp technique, and body composition by DEXA (% body fat) and by MRI (subcutaneous and intra-abdominal fat). Global characterization of lipid molecular species in serum was performed by a lipidomics strategy using liquid chromatography coupled to mass spectrometry. Obesity, independent of genetic influences, was primarily related to increases in lysophosphatidylcholines, lipids found in proinflammatory and proatherogenic conditions and to decreases in ether phospholipids, which are known to have antioxidant properties. These lipid changes were associated with insulin resistance, a pathogonomic characteristic of acquired obesity in these young adult twins. Our results show that obesity, already in its early stages and independent of genetic influences, is associated with deleterious alterations in the lipid metabolism known to facilitate atherogenesis, inflammation and insulin resistance.
Notes
Cites: Cell. 1992 Mar 6;68(5):879-871312391
Cites: J Immunol. 2005 Mar 1;174(5):2981-915728511
Cites: Biochem J. 1992 Oct 1;287 ( Pt 1):237-401417777
Cites: J Stud Alcohol. 1994 Mar;55(2):149-588189735
Cites: Diabetes. 1994 Jul;43(7):915-98013757
Cites: Lipids. 1995 Jan;30(1):1-147760683
Cites: Circ Res. 1996 May;78(5):780-98620597
Cites: Am J Physiol. 1996 Dec;271(6 Pt 1):E941-518997211
Cites: Nat Genet. 1997 Dec;17(4):387-929398838
Cites: Biochem J. 1999 Mar 15;338 ( Pt 3):769-7610051451
Cites: Glia. 2000 Mar;30(1):92-10410696148
Cites: Nature. 2000 Sep 14;407(6801):233-4111001066
Cites: Nat Biotechnol. 2001 Jan;19(1):45-5011135551
Cites: FASEB J. 2001 Feb;15(2):312-2111156947
Cites: Atherosclerosis. 2001 Mar;155(1):45-5211223425
Cites: World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-25311234459
Cites: Cell. 2001 Feb 23;104(4):503-1611239408
Cites: Neuroscientist. 2001 Jun;7(3):232-4511499402
Cites: Hypertension. 2002 Feb;39(2 Pt 2):508-1211882599
Cites: Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H671-912124215
Cites: Twin Res. 2002 Oct;5(5):366-7112537860
Cites: J Mol Cell Cardiol. 2003 Nov;35(11):1375-8414596794
Cites: Am J Physiol Endocrinol Metab. 2003 Dec;285(6):E1151-6014607781
Cites: Biochim Biophys Acta. 2003 Nov 15;1634(3):6114643793
Cites: Biochem Soc Trans. 2004 Feb;32(Pt 1):147-5014748736
Cites: FASEB J. 2004 Jun;18(9):1040-215084525
Cites: Diabetologia. 2004 Jun;47(6):1118-2515168018
Cites: Arterioscler Thromb Vasc Biol. 2004 Sep;24(9):1640-515178563
Cites: Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E768-7415585588
Cites: J Lipid Res. 2005 May;46(5):839-6115722563
Cites: Curr Mol Med. 2005 May;5(3):297-30815892649
Cites: Am J Physiol Lung Cell Mol Physiol. 2005 Aug;289(2):L176-8515764646
Cites: Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-916009939
Cites: Nat Rev Drug Discov. 2005 Jul;4(7):594-61016052242
Cites: Bioinformatics. 2006 Mar 1;22(5):634-616403790
Cites: Nature. 2006 Apr 13;440(7086):944-816612386
Cites: Mol Diagn Ther. 2006;10(2):101-816669608
Cites: Am J Physiol Lung Cell Mol Physiol. 2006 Jul;291(1):L91-10116461426
Cites: Expert Rev Mol Diagn. 2006 Jul;6(4):575-8516824031
Cites: J Clin Endocrinol Metab. 2006 Jul;91(7):2776-8116608891
Cites: Obesity (Silver Spring). 2006 May;14(5):826-3716855192
Cites: BMC Genomics. 2006;7:14216762068
Cites: Diabetes. 2006 Sep;55(9):2579-8716936207
Cites: PLoS One. 2006;1:e9717183729
Cites: Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H904-1117012356
Cites: J Clin Endocrinol Metab. 2004 Sep;89(9):4414-2115356040
Cites: Lancet. 2004 Sep 11-17;364(9438):937-5215364185
Cites: J Clin Endocrinol Metab. 1971 Nov;33(5):732-85166455
Cites: Clin Chem. 1972 Jun;18(6):499-5024337382
Cites: Biochim Biophys Acta. 1973 Oct 17;326(1):34-424127872
Cites: Am J Physiol. 1979 Sep;237(3):E214-23382871
Cites: Diabetes. 1985 Oct;34(10):1055-84043554
Cites: J Clin Invest. 1987 Jun;79(6):1713-93294899
Cites: Atherosclerosis. 1999 Mar;143(1):201-410208496
Cites: J Biol Chem. 1999 Sep 3;274(36):25189-9210464236
Cites: Pharmacol Res. 1999 Sep;40(3):211-2510479465
Cites: Twin Res. 2004 Oct;7(5):421-915527657
Cites: Blood. 2005 Feb 1;105(3):1127-3415383458
Cites: Appl Bioinformatics. 2004;3(4):205-1715702951
Cites: Mol Cell Biochem. 1992 Aug 18;113(2):151-691518506
PubMed ID
17299598 View in PubMed
Less detail

Apolipoprotein B/A-I ratio related to visceral but not to subcutaneous adipose tissue in elderly Swedes.

https://arctichealth.org/en/permalink/ahliterature144309
Source
Atherosclerosis. 2010 Aug;211(2):656-9
Publication Type
Article
Date
Aug-2010
Author
Charlotte Ebeling Barbier
Lars Lind
Håkan Ahlström
Anders Larsson
Lars Johansson
Author Affiliation
Department of Radiology, Uppsala University Hospital, 75185 Uppsala, Sweden. Charlotte.Ebeling Barbier@radiol.uu.se
Source
Atherosclerosis. 2010 Aug;211(2):656-9
Date
Aug-2010
Language
English
Publication Type
Article
Keywords
Adipose Tissue - pathology
Aged
Apolipoprotein A-I - metabolism
Apolipoproteins B - metabolism
Cohort Studies
Female
Humans
Intra-Abdominal Fat - pathology
Magnetic Resonance Imaging - methods
Male
Random Allocation
Regression Analysis
Sex Factors
Subcutaneous Fat - pathology
Sweden
Abstract
To investigate whether the amount of visceral (VAT) or subcutaneous adipose tissue (SAT) independently of the other can determine the apolipoprotein (apo)B/A-I ratio.
VAT and SAT areas were assessed using magnetic resonance imaging in 247 randomly selected 70-year-old men and women who did not use lipid-lowering drugs. Their adipose tissue areas were compared to their apoB and apo A-I levels and to their apoB/A-I ratios.
The VAT area and the gender were significantly related to the apoB/A-I ratio whereas the SAT area was not. There was a positive relationship between the VAT area and the apoB/A-I ratio.
A positive relationship was established between the amount of VAT and the apoB/A-I ratio, whereas there was no relationship between the amount of SAT and the apoB/A-I ratio. This observation supports the notion that VAT is metabolically active.
PubMed ID
20382384 View in PubMed
Less detail

The role of obesity, different fat compartments and sleep apnea severity in circulating leptin levels: the Icelandic Sleep Apnea Cohort study.

https://arctichealth.org/en/permalink/ahliterature120838
Source
Int J Obes (Lond). 2013 Jun;37(6):835-42
Publication Type
Article
Date
Jun-2013
Author
E S Arnardottir
G. Maislin
N. Jackson
R J Schwab
B. Benediktsdottir
K. Teff
S. Juliusson
A I Pack
T. Gislason
Author Affiliation
Department of Respiratory Medicine and Sleep, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland. ernasif@landspitali.is
Source
Int J Obes (Lond). 2013 Jun;37(6):835-42
Date
Jun-2013
Language
English
Publication Type
Article
Keywords
Adult
Biological Markers - blood
Body Composition
Body mass index
Cohort Studies
Cross-Sectional Studies
Female
Humans
Hypertension - blood - epidemiology - physiopathology
Iceland - epidemiology
Intra-Abdominal Fat - pathology
Leptin - blood
Male
Middle Aged
Obesity - blood - complications - epidemiology - physiopathology
Polysomnography
Questionnaires
Severity of Illness Index
Sex Distribution
Sleep Apnea Syndromes - blood - epidemiology - etiology - physiopathology
Subcutaneous Fat - pathology
Time Factors
Abstract
To assess whether sleep apnea severity has an independent relationship with leptin levels in blood after adjusting for different measures of obesity and whether the relationship between obstructive sleep apnea (OSA) severity and leptin levels differs depending on obesity level.
Cross-sectional study of 452 untreated OSA patients (377 males and 75 females), in the Icelandic Sleep Apnea Cohort (ISAC), age 54.3±10.6 (mean±s.d.), body mass index (BMI) 32.7±5.3?kg?m(-2) and apnea-hypopnea index 40.2±16.1 events per h. A sleep study and magnetic resonance imaging of abdominal visceral and subcutaneous fat volume were performed, as well as fasting serum morning leptin levels were measured.
Leptin levels were more highly correlated with BMI, total abdominal and subcutaneous fat volume than visceral fat volume per se. No relationship was found between sleep apnea severity and leptin levels, assessed within three BMI groups (BMI or =35?kg?m(-2)). In a multiple linear regression model, adjusted for gender, BMI explained 38.7% of the variance in leptin levels, gender explained 21.2% but OSA severity did not have a significant role and no interaction was found between OSA severity and BMI on leptin levels. However, hypertension had a significant effect on the interaction between OSA severity and obesity (P=0.04). In post-hoc analysis for nonhypertensive OSA subjects (n=249), the association between leptin levels and OSA severity explained a minor but significant variance (3.2%) in leptin levels. This relationship was greatest for nonobese nonhypertensive subjects (significant interaction with obesity level). No relationship of OSA severity and leptin levels was found for hypertensive subjects (n=199).
Obesity and gender are the dominant determinants of leptin levels. OSA severity is not related to leptin levels except to a minor degree in nonhypertensive nonobese OSA subjects.
Notes
Cites: Respiration. 2008;75(3):257-6418073454
Cites: Diabetes Care. 2011 Aug;34(8):1741-821680722
Cites: Sleep Breath. 2012 Sep;16(3):649-5621912907
Cites: Obesity (Silver Spring). 2012 Oct;20(10):2124-3222395811
Cites: Hypertension. 1999 Nov;34(5):1047-5210567180
Cites: J Clin Endocrinol Metab. 2000 Mar;85(3):1151-810720054
Cites: Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H234-710899061
Cites: Chest. 2000 Sep;118(3):580-610988175
Cites: Int J Obes Relat Metab Disord. 2000 Sep;24(9):1139-4411033982
Cites: Metabolism. 2000 Oct;49(10):1278-8411079816
Cites: Int J Obes Relat Metab Disord. 2001 Jun;25(6):805-1011439293
Cites: Thorax. 2002 May;57(5):429-3411978920
Cites: Chest. 2002 Sep;122(3):829-3912226021
Cites: Eur Respir J. 2003 Feb;21(2):253-912608438
Cites: Am J Med. 2003 Apr 1;114(5):370-612714126
Cites: Arch Otolaryngol Head Neck Surg. 2003 May;129(5):538-4012759266
Cites: Am J Respir Crit Care Med. 2003 Sep 1;168(5):522-3012746251
Cites: Eur Respir J. 2003 Aug;22(2):251-712952256
Cites: Respir Res. 2011;12(1):8021676224
Cites: J Appl Physiol (1985). 2011 Sep;111(3):881-9021737828
Cites: Med Sci Monit. 2004 Sep;10(9):CR510-515328483
Cites: J Clin Endocrinol Metab. 2004 Jun;89(6):2548-5615181022
Cites: J Clin Sleep Med. 2011 Oct 15;7(5):486-92B22003344
Cites: Am Rev Respir Dis. 1984 Feb;129(2):244-66696325
Cites: Nutrition. 1996 Jan;12(1):45-518838836
Cites: Diabetes. 1997 Mar;46(3):342-79032087
Cites: J Intern Med. 1997 Jan;241(1):11-89042088
Cites: J Sleep Res. 1997 Jun;6(2):146-79377535
Cites: Diabetes. 1998 Jan;47(1):98-1039421381
Cites: Circulation. 1999 Aug 17;100(7):706-1210449691
Cites: Am J Respir Crit Care Med. 2005 Jan 15;171(2):183-715516536
Cites: Chest. 2005 Mar;127(3):716-2115764749
Cites: Respiration. 2005 Jul-Aug;72(4):395-40116088283
Cites: Am J Respir Crit Care Med. 2007 Jan 15;175(2):190-517068329
Cites: Sleep Med. 2007 Jan;8(1):12-717157064
Cites: Vasc Health Risk Manag. 2006;2(2):163-917319461
Cites: Diabetes Obes Metab. 2007 Sep;9(5):679-8717697060
Cites: Proc Am Thorac Soc. 2008 Feb 15;5(2):185-9218250211
Cites: Eur Respir J. 2004 Apr;23(4):601-415083761
Cites: Sleep. 2004 Mar 15;27(2):235-915124716
Cites: Respiration. 2004 May-Jun;71(3):252-915133345
Cites: Lung. 2008 Jul-Aug;186(4):209-1718365276
Cites: Chest. 2008 Oct;134(4):686-9218625666
Cites: BMC Pulm Med. 2008;8:2118828917
Cites: Intern Med. 2008;47(21):1843-918981626
Cites: Respiration. 2008;76(4):377-8518577878
Cites: Prog Cardiovasc Dis. 2009 Mar-Apr;51(5):434-5119249449
Cites: Sleep. 2009 Apr;32(4):447-7019413140
Cites: Lung. 2009 Mar-Apr;187(2):75-8119127383
Cites: Sleep Breath. 2009 Nov;13(4):391-519415358
Cites: Diabetes Care. 2010 Jul;33(7):1629-3420413520
Cites: Sleep. 2010 Aug;33(8):1075-8020815189
Cites: Am J Respir Crit Care Med. 2010 Sep 15;182(6):826-3320508215
Cites: Mediators Inflamm. 2011;2011:25358021331287
Cites: Med Sci Monit. 2011 Feb 25;17(3):CR159-6421358603
Cites: J Breath Res. 2010 Sep;4(3):03600321383480
Cites: Eur Respir J. 2011 Jun;37(6):1537-8; author reply 1538-921632837
Cites: Sleep. 2012 Jul;35(7):921-3222754038
PubMed ID
22964793 View in PubMed
Less detail

Routine clinical measures of adiposity as predictors of visceral fat in adolescence: a population-based magnetic resonance imaging study.

https://arctichealth.org/en/permalink/ahliterature106107
Source
PLoS One. 2013;8(11):e79896
Publication Type
Article
Date
2013
Author
Katie Goodwin
Catriona Syme
Michal Abrahamowicz
Gabriel T Leonard
Louis Richer
Michel Perron
Suzanne Veillette
Daniel Gaudet
Tomas Paus
Zdenka Pausova
Author Affiliation
Hospital for Sick Children, University of Toronto, Toronto, Canada.
Source
PLoS One. 2013;8(11):e79896
Date
2013
Language
English
Publication Type
Article
Keywords
Adiposity
Adolescent
Body mass index
Child
Cross-Sectional Studies
Female
Humans
Intra-Abdominal Fat - pathology
Magnetic Resonance Imaging
Male
Obesity - diagnosis - epidemiology - pathology
Quebec - epidemiology
Sex Factors
Sexual Maturation - physiology
Subcutaneous Fat - pathology
Waist Circumference
Abstract
Visceral fat (VF) increases cardiometabolic risk more than fat stored subcutaneously. Here, we investigated how well routine clinical measures of adiposity, namely body mass index (BMI) and waist circumference (waist), predict VF and subcutaneous fat (SF) in a large population-based sample of adolescents. As body-fat distribution differs between males and females, we performed these analyses separately in each sex.
VF and SF were measured by magnetic resonance imaging in 1,002 adolescents (482 males, age 12-18 years). Relationships of BMI and waist with VF and SF were tested in multivariable analyses, which adjusted for potentially confounding effects of age and height.
In both males and females, BMI and waist were highly correlated with VF and SF, and explained 55-76% of their total variance. When VF was adjusted for SF, however, BMI and waist explained, respectively, only 0% and 4% of VF variance in males, and 4% and 11% of VF variance in females. In contrast, when SF was adjusted for VF, BMI and waist explained, respectively, 36% and 21% of SF variance in males, and 48% and 23% of SF variance in females. These relationships were similar during early and late puberty.
During adolescence, routine clinical measures of adiposity predict well SF but not VF. This holds for both sexes and throughout puberty. Further longitudinal studies are required to assess how well these measures predict changes of VF and SF over time. Given the clinical importance of VF, development of cost-effective imaging techniques and/or robust biomarkers of VF accumulation that would be suitable in everyday clinical practice is warranted.
Notes
Cites: Diabetes Care. 2009 Jun;32(6):1068-7519244087
Cites: Int J Obes (Lond). 2006 Jan;30(1):23-3016344845
Cites: Obes Surg. 2009 Nov;19(11):1564-7319711137
Cites: Nutr Res Rev. 2009 Dec;22(2):137-4719737436
Cites: Obes Rev. 2010 Jan;11(1):31-4019413707
Cites: Ann Hum Biol. 1974 Jan;1(1):29-4016431550
Cites: Curr Opin Nephrol Hypertens. 2006 Mar;15(2):173-816481885
Cites: Am J Clin Nutr. 2007 Feb;85(2):362-817284730
Cites: Radiology. 2007 Mar;242(3):846-5617244720
Cites: Hum Brain Mapp. 2007 Jun;28(6):502-1817469173
Cites: J Clin Endocrinol Metab. 2007 Jun;92(6):2240-717374712
Cites: Circulation. 2007 Jul 3;116(1):39-4817576866
Cites: Int J Obes (Lond). 2008 Jan;32(1):91-918193066
Cites: Obesity (Silver Spring). 2007 Dec;15(12):2984-9318198307
Cites: Diabetes. 2008 Feb;57(2):367-7117977954
Cites: Arch Pediatr Adolesc Med. 2008 May;162(5):453-6118458192
Cites: Cell Metab. 2008 May;7(5):410-2018460332
Cites: Arch Intern Med. 2008 Aug 11;168(15):1617-2418695075
Cites: J Neurosci. 2008 Sep 17;28(38):9519-2418799683
Cites: Am J Clin Nutr. 2008 Nov;88(5):1263-7118996861
Cites: Circulation. 2009 Feb 3;119(4):628-4719139390
Cites: Diabetes Care. 2009 Mar;32(3):481-519074995
Cites: Arch Pediatr Adolesc Med. 2009 Apr;163(4):371-719349567
Cites: Obesity (Silver Spring). 2011 Feb;19(2):402-820948514
Cites: Int J Pediatr Obes. 2011 Apr;6(2):149-5620528126
Cites: Circulation. 2011 Aug 16;124(7):840-5021844090
Cites: Circulation. 2011 Nov 1;124(18):1996-201921947291
Cites: J Clin Endocrinol Metab. 2011 Nov;96(11):E1756-6021865361
Cites: Hypertension. 2012 Mar;59(3):572-922291448
Cites: J Clin Endocrinol Metab. 2012 May;97(5):1517-2522337910
Cites: Mayo Clin Proc. 2012 May;87(5):452-6022560524
Cites: Pediatr Obes. 2012 Oct;7(5):e42-6122911903
Cites: Int J Obes (Lond). 2012 Oct;36(10):1261-922710928
Cites: Obes Rev. 2012 Dec;13 Suppl 2:6-1323107255
Cites: Endocr Rev. 2013 Aug;34(4):463-50023550081
Cites: J Clin Endocrinol Metab. 2013 Feb;98(2):802-1023284008
Cites: Adv Healthc Mater. 2012 Jan 11;1(1):80-323184689
Cites: JAMA. 1999 Oct 27;282(16):1523-910546691
Cites: Int J Obes Relat Metab Disord. 2002 Feb;26(2):193-911850750
Cites: Diabetes. 2002 Oct;51(10):2951-812351432
Cites: J Adolesc Health. 2002 Dec;31(6 Suppl):192-20012470915
Cites: Arch Pediatr Adolesc Med. 2003 Aug;157(8):821-712912790
Cites: JAMA. 2003 Nov 5;290(17):2320-214600192
Cites: N Engl J Med. 2004 Jun 17;350(25):2549-5715201411
Cites: Am J Clin Nutr. 2004 Aug;80(2):271-815277145
Cites: Diabetes. 1983 Feb;32(2):117-236337893
Cites: Arteriosclerosis. 1990 Jul-Aug;10(4):493-62196039
Cites: Am J Clin Nutr. 1996 Jul;64(1):12-78669407
Cites: Int J Obes Relat Metab Disord. 1998 Jun;22(6):549-589665676
Cites: Int J Obes Relat Metab Disord. 1999 Aug;23(8):801-910490780
Cites: N Engl J Med. 2005 Mar 17;352(11):1138-4515784668
Cites: Child Dev. 2009 Mar-Apr;80(2):327-3719466995
PubMed ID
24244574 View in PubMed
Less detail