Occurrence of molds and actinomycetes in the breathing zone of farmers during the handling of hay, straw, or grain was studied with the use of an Andersen sampler on 35 farms in Finland. On 24 farms there was a person with recently diagnosed farmer's lung disease, and on 11 farms people were free of the disease. The total spore concentration and the concentrations of the spores of Thermoactinomyces (T) vulgaris, Micropolyspora (M) faeni, and Aspergillus (A) umbrosus were statistically significantly higher on the farms of patients with farmer's lung than on the disease-free farms. The mean proportions of the spores of thermotolerant and thermophilic microbes were greater on the farms of farmer's lung patients than on the reference farms. T vulgaris was the predominant actinomycete species. Both T vulgaris and A umbrosus were found on all farms of farmer's lung patients, but M faeni on only about half of such farms. The findings match the results of previous microbiological analyses of Finnish moldy hay and serological analyses of Finnish farmer's lung patients. It seems that T vulgaris, not M faeni, may be the main causative agent of farmer's lung in Finland. The possible etiologic role of A umbrosus requires further investigation. Because the farmers often failed to identify the moldiness of the plant material in contrast to researchers, it might be possible, through training, to improve farmers' ability to identify moldiness.
Assessment of exposure to fungi has commonly been limited to fungal spore measurements that have shown associations between fungi and development or exacerbation of different airway diseases. Because large numbers of submicronic fragments can be aerosolized from fungal cultures under laboratory conditions, it has been suggested that fungal exposure is more complex and higher than that commonly revealed by spore measurements. However, the assessment of fungal fragments in complex environmental matrix remain limited due to methodological challenges. With a recently developed immunolabeling method for field emission scanning electron microscope (FESEM), we could assess the complex composition of fungal aerosols present in personal thoracic samples collected from two Norwegian sawmills. We found that large fungal fragments (length >1 µm) dominated the fungal aerosols indicating that the traditional monitoring approach of spores severely underestimate fungal exposure. The composition of fungal aerosols comprised in average 9% submicronic fragments, 62% large fragments, and 29% spores. The average concentrations of large and submicronic fragments (0.2-1 µm) were 3 × 105 and 0.6 × 105 particles m-3, respectively, and correlated weakly with spores (1.4 × 105 particles m-3). The levels of fragments were 2.6 times higher than the average spore concentration that was close to the proposed hazardous level of 105 spores per m3. The season influenced significantly the fungal aerosol concentrations but not the composition. Furthermore, the ratio of spores in the heterogeneous fungal aerosol composition was significantly higher in saw departments as compared to sorting of green timber departments where the fungal fragments were most prevalent. Being the dominating particles of fungal aerosols in sawmills, fungal fragments should be included in exposure-response studies to elucidate their importance for health impairments. Likewise, the use of fungal aerosol composition in such studies should be considered.
The risk of hospitalization for asthma caused by outdoor aeroallergens is largely unknown.
The objective of this study was to determine the association between changes in outdoor aeroallergens and hospitalizations for asthma from the Pacific coast to the Atlantic coast of Canada.
A daily time series analysis was done to test the association between daily changes in aeroallergens and daily changes in hospitalizations for asthma during a 7-year period between 1993 and 2000 in 10 of the largest cities in Canada. Results were adjusted for long-term trends, day of the week, climate, and air pollution.
A daily increase, equivalent to the mean value of each allergen, was associated with the following percentage increase in asthma hospitalizations: 3.3% (95% CI, 2.3 to 4.1) for basidiomycetes, 3.1% (95% CI, 2.8 to 5.7) for ascomycetes, 3.2% (95% CI, 1.6 to 4.8) for deuteromycetes, 3.0% (95% CI, 1.1 to 4.9) for weeds, 2.9% (95% CI, 0.9 to 5.0) for trees, and 2.0% (95% CI, 1.1 to 2.8) for grasses. After accounting for the independent effects of trees and ozone, the combination of the 2 was associated with an additional 0.22% increase in admissions averaged across cities (P
Microsporidia are fungal parasites that infect diverse invertebrate and vertebrate hosts. Finfish aquaculture supports epizootics due to high host density and the high biotic potential of these parasites. Reliable methods for parasite detection and identification are a necessary precursor to empirical assessment of strategies to mitigate the effects of these pathogens during aquaculture. We developed an integrative approach to detect and identify Loma morhua infecting Atlantic cod. We show that the spleen is more reliable than the commonly presumed gills as best organ for parasite detection in spite of substantial morphological plasticity in xenoma complexes. We developed rDNA primers with 100% sensitivity in detecting L. morhua and with utility in distinguishing some congeneric Loma species. ITS sequencing is necessary to distinguish L. morhua from other congeneric microsporidia due to intraspecific nucleotide variation. 64% of L. morhua ITS variants from Atlantic cod have a 9-nucleotide motif that distinguishes it from Loma spp. infecting non-Gadus hosts. The remaining 36% of ITS variants from Atlantic cod are distinguished from currently represented Loma spp., particularly those infecting Gadus hosts, based on a 14-nucleotide motif. This research approach is amenable to developing templates in support of reliable detection and identification of other microsporidian parasites in fishes.
Sera from few Finnish patients with clinical farmers' lung react in precipitin tests with extracts of the thermophilic actinomycetes that commonly cause the disease elsewhere. Hays associated with the disease in Finland showed less evidence of spontaneous heating and contained fewer actinomycete spores than British hays. Only Thermoactinomyces vulgaris was sometimes abundant. Some species of mesophilic fungi were more abundant than in Britain and one, Aspergillus umbrosus, reacted with most sera from farmers' lung patients in precipitin tests. A panel of antigens, including thermophilic actinomycetes, A. umbrosus and other species of the Aspergillus glaucus group, is recommended for screening farmers' lung sera.
Three new species of Tomentella (Thelephorales) from Finland, T. globosa, T. lammiensis, and T. longisterigmata, are described and illustrated with morphological characteristics and nuc rDNA ITS1-5.8S-ITS2 sequences. T. globosa is characterized by mucedinoid, pale to dark brown basidiocarps adherent to the substrate, generative hyphae with clamps and rarely with simple septa, and echinulate, globose basidiospores (echinuli up to 1.5 µm long). T. lammiensis is characterized by mucedinoid, oxide yellow to golden brown basidiocarps adherent to the substrate, generative hyphae with clamps and rarely with simple septa, and echinulate, ellipsoid, triangular, or lobbed basidiospores (echinuli up to 2 µm long). T. longisterigmata is characterized by mucedinoid, dark brown to chestnut basidiocarps separable from the substrate, generative hyphae clamped and rarely with simple septa, the long basidial sterigmata (7-11 µm long), and echinulate, globose basidiospores (echinuli up to 2 µm long). An absence of rhizomorphs and cystidia is their common morphological feature. Molecular analyses by maximum likelihood, maximum parsimony, and Bayesian analyses confirm the phylogenetic position of these three new species. The discriminating characters of these new species and their closely related species are discussed in this study, and a key to the species from Finland is provided.
We describe an outbreak of sudden health problems in workers at a Danish grass seed plant after exposure to a particularly dusty lot of grass seeds. The seeds are called problematic seeds. The association between development of organic dust toxic syndrome (ODTS) and the handling of grass seeds causing exposure was assessed in a four-step model: (i) identification of exposure source, (ii) characterization of the emission of bioaerosols from the problematic and reference seeds, (iii) personal and stationary exposure measurement at the plant and (iv) repeated health examinations. The grass seeds were identified as the exposure source; the emissions of some bioaerosol components were up to 10(7) times higher from the problematic seeds than from reference seeds. Cleaning of the seeds was not enough to sufficiently reduce the high emission from the problematic seeds. Emission in terms of dust was 3.4 times as high from the problematic cleaned seeds as from cleaned reference seeds. The personal exposure reached 3 × 10(5) endotoxin units m(-3), 1 × 10(6) colony-forming units (cfu) of thermophilic actinomycetes m(-3), 8 × 10(5) cfu of Aspergillus fumigatus m(-3) and 9 × 10(6) hyphal fragments m(-3). Several workers working with the problematic seeds had symptoms consistent with ODTS. The most severe symptoms were found for the workers performing the tasks causing highest exposure. Respiratory airway protection proved efficient to avoid development of ODTS. Work with reference seeds did not cause workers to develop ODTS. Exposure was during work with the problematic seeds higher than suggested occupational exposure limits but lower than in studies where researchers for some minutes have repeated a single task expected to cause ODTS. In this study, many different bioaerosol components were measured during a whole working day. We cannot know, whether it is the combination of different bioaerosol components or a single component which is responsible for the development of ODTS. In conclusion, workers developed specific health symptoms due to the high bioaerosol exposure and were diagnosed with ODTS. Exposure to high concentrations of endotoxin, actinomycetes, fungi, hyphal fragments, ß-glucan, and A. fumigatus occurred when working with a dusty lot of grass seed. Suspicion should be elicited by seeds stored without being properly dried and by seeds producing more dust than usually.
Notes
Cites: Chest. 1999 Nov;116(5):1452-810559111
Cites: Br J Ind Med. 1989 Apr;46(4):233-82713279
Cites: Chest. 2000 Sep;118(3):852-6010988215
Cites: Am J Ind Med. 2001 Feb;39(2):209-1711170163
The present study investigated the content of fungal aerospores in homes and schools of house-dust-mite (HDM)-sensitized and control children in a subarctic area. During winter, airborne microfungi were collected from the homes and schools of 19 HDM-sensitized children and 19 nonatopic controls, all living in the community of Sør-Varanger, northern Norway. The samples were cultivated and microfungal growth was identified microscopically. Indoor humidity, temperature, and carbon dioxide (CO2) concentrations were measured. Housing conditions and sociodemographic and symptom data were obtained by a questionnaire. Penicillium was the most common microfungus in both homes and schools, followed by various yeasts, Aspergillus, Cladosporium, and Mucor. The number of infected homes was equal in the HDM-sensitized group and the control group, but aerospore counts were higher in the HDM-sensitized group than in the control group. The lowest aerospore counts were found in the schools. High aerospore counts also appeared to be related to high indoor humidity. The keeping of pets and damp indoor conditions were more frequent in homes of HDM-sensitized children than in the control group, whereas parental smoking and carpeting occurred with equal frequency in both groups. This indicates that no allergy sanitation measures had been undertaken, especially in the homes of the HDM-sensitized children.