Estrogens have an important role in the development and progression of breast cancer. 17beta-Hydroxysteroid dehydrogenase type 1 (17HSD1), type 2 (17HSD2), and type 5 (17HSD5) are associated with sex steroid metabolism in normal and cancerous breast tissue. The mRNA expressions of the 17HSD1, 17HSD2, and 17HSD5 enzymes were analyzed in 794 breast carcinoma specimens by using tissue microarrays and normal histologic sections. The results were correlated with the estrogen receptor alpha (ER-alpha) and beta (ER-beta), progesterone receptor, Ki67, and c-erbB-2 expressions analyzed by immunohistochemical techniques and with the Tumor-Node-Metastasis classification, tumor grade, disease-free interval, and survival of the patients. Signals for 17HSD1 mRNA were detected in 16%, 17HSD2 in 25%, and 17HSD5 in 65% of the breast cancer specimens. No association between the 17HSD1, 17HSD2, and 17HSD5 expressions was detected. A significant association was observed between ER-alpha and ER-beta (P = 0.02; odds ratio, 1.96) expressions. There was also a significant inverse association between ER-alpha and 17HSD1 (P = 0.04; odds ratio, 0.53), as well as ER-alpha and 17HSD5 (P = 0.001; odds ratio, 0.35). Patients with tumors expressing 17HSD1 mRNA or protein had significantly shorter overall and disease-free survival than the other patients (P = 0.0010 and 0.0134, log rank). The expression of 17HSD5 was significantly higher in breast tumor specimens than in normal tissue (P = 0.033; odds ratio, 5.56). The group with 17HSD5 overexpression had a worse prognosis than the other patients (P = 0.0146). ER-alpha also associated with survival (P = 0.045). Cox multivariate analyses showed that 17HSD1 mRNA, tumor size, and ER-alpha had independent prognostic significance.
17Beta-hydroxysteroid dehydrogenase type 2: independent prognostic significance and evidence of estrogen protection in female patients with colon cancer.
Biocenter Oulu, Research Center for Molecular Endocrinology, WHO Collaborating Centre for Research on Reproductive Health, P.O. Box 5000, University of Oulu, FIN-90014 Oulu, Finland.
The mRNA expression of 17beta-hydroxysteroid dehydrogenase (17HSD) types 1 and 2 enzymes catalyzing opposite reaction of estrogen metabolism was investigated in colon cancer. Further, the significance of the 17HSD type 2 enzyme as a possible marker of colorectal cancer (CRC) prognosis was studied. In the normal mucosa, 17HSD type 2 mRNA was predominantly expressed in the surface epithelium and in the upper parts of the crypts. In the lamina propria expression was seen in endothelial cells and mononuclear phagocytes. In colorectal tumors, 17HSD type 2 expression was in most cases downregulated. Female patients had significantly more cancers with high 17HSD type 2 mRNA expression (n=11/35; 31%) than male patients (n=3/39; 8%) (P=0.02). We observed a significant impact of 17HSD type 2 mRNA expression on survival in female patients with distal colorectal cancer (n=24), with an overall cumulative 5-year survival rate of 54% in those with low 17HSD type 2 mRNA expression. None of the female patients with high 17HSD type 2 mRNA expression survived (n=11; P=0.0068; log rank 7.32). In male patients, no significant association with survival was observed. Our data provide evidence suggesting that low 17HSD type 2 mRNA expression is an independent marker of favorable prognosis in females with distal colorectal cancer, supporting the presence of gender- and location-related differences in the pathogenesis of colon cancer.
Type XIII collagen is a type II transmembrane protein found at sites of cell adhesion. Transgenic mouse lines were generated by microinjection of a DNA construct directing the synthesis of truncated alpha1(XIII) chains. Shortened alpha 1(XIII) chains were synthesized by fibroblasts from mutant mice, and the lack of intracellular accumulation in immunofluorescent staining of tissues suggested that the mutant molecules were expressed on the cell surface. Transgene expression led to fetal lethality in offspring from heterozygous mating with two distinct phenotypes. The early phenotype fetuses were aborted by day 10.5 of development due to a lack of fusion of the chorionic and allantoic membranes. The late phenotype fetuses were aborted by day 13.5 of development and displayed a weak heartbeat, defects of the adherence junctions in the heart with detachment of myofilaments and abnormal staining for the adherence junction component cadherin. Decreased microvessel formation was observed in certain regions of the fetus and the placenta. These results indicate that type XIII collagen has an important role in certain adhesive interactions that are necessary for normal development.
Familial hypercholesterolemia (FH) is seen with high frequency in the province of Québec, Canada. A large deletion (> 10 kb) of the 5'-end of the low density lipoprotein receptor (LDL-R) gene is the major mutation of the LDL-R in FH subjects in Québec (approximately 60% of FH subjects). No mRNA is produced from the allele bearing the mutation, and cellular cholesterol obtained by receptor-mediated endocytosis is under the control of the non-deletion allele. We have previously reported that some patients with the 10-kb deletion (approximately 9%) fail to respond to the hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) inhibitor class of medications. We studied mRNA levels of the LDL-R and HMG CoA reductase genes in response to the HMG CoA reductase inhibitor lovastatin in a time- and dose-dependent fashion in cultured human skin fibroblasts and we devised an in vitro model to study the response to drug therapy in subjects with FH. We determined mRNA levels by RNase protection assay in skin fibroblasts obtained from controls (n = 3) and FH subjects with the > 10-kb deletion (responders, n = 3; non responders, n = 3; to drug therapy). We measured 125I-LDL binding on skin fibroblasts grown in the presence of lipoprotein-deficient serum with or without 1 microM lovastatin, using 10 micrograms/mL of 125I-LDL protein. Control subjects exhibited coordinate regulation of the LDL-R and HMG CoA reductase genes in response to lovastatin, 0.1-25 microM, for 0-24 h. Correlation coefficients between mRNA levels of both genes were > 0.9 in controls and FH subjects. However, by linear regression analysis, the corresponding slopes for the correlation between both genes were 0.98 (controls), 3.36 and 3.63 (FH responders and non-responders), indicating a pattern of dissociated but still coordinate regulation in FH subjects. The magnitude of increase of mRNA levels of the LDL-R gene was approximately five-fold over LPDS in controls, two-fold in FH responders and two-fold in non-responders. Binding studies using 125I-LDL reveal that a control subject and all responders had a 2-2.5-fold increase in binding to cell surface receptors but two out of three FH non-responders showed no increase in binding in response to 1 microM lovastatin. The LDL-R and HMG CoA reductase genes are expressed in coordinate regulation in fibroblasts from subjects with FH due to the > 10-kb deletion, but with a proportionately greater up-regulation of the HMG CoA reductase gene. Some subjects, with FH caused by the > 10-kb deletion of the LDL-R gene, who fail to respond to HMG CoA reductase inhibitors have abnormal LDL receptor binding activity at the cell surface in response to lovastatin in vitro.
The levels of adrenomedullin (ADM), a newly discovered vasodilating and natriuretic peptide, are elevated in plasma and ventricular myocardium in human congestive heart failure suggesting that cardiac synthesis may contribute to the plasma concentrations of ADM. To examine the time course of induction and mechanisms regulating cardiac ADM gene expression, we determined the effect of acute and short-term cardiac overload on ventricular ADM mRNA and immunoreactive ADM (ir-ADM) levels in conscious rats. Acute pressure overload was produced by infusion of arginine8-vasopressin (AVP, 0.05 microg/kg/min, i.v.) for 2 h into 12-week-old hypertensive TGR(mREN-2)27 rats and normotensive Sprague-Dawley (SD) rats. Hypertension and marked left ventricular hypertrophy were associated with 2.2-times higher ir-ADM levels in the left ventricular epicardial layer (178 +/- 36 vs. 81 +/- 23 fmol/g, P
Département de médecine, Centre de recherche, Hôpital Laval, Institut universitaire de cardiologie et de pneumologie de l'Université Laval, Sainte-Foy, Canada.
Brown Norway rats are widely used as a model of asthma, whereas Sprague Dawley rats do not develop allergic reactions under the same conditions. Given the importance of alveolar macrophages (AM) in down-regulating cellular immune responses in the lung, we postulated that the different susceptibilities in the development of airway allergic reactions in these rat strains may be related to functional differences in their AM. We investigated the production of important mediators in asthma, namely tumour necrosis factor (TNF), interleukin-10 (IL-10), IL-12, IL-13, nitric oxide (NO) and macrophage inflammatory protein-1alpha (MIP-1alpha), by AM of unsensitized Sprague Dawley and Brown Norway rats. AM were purified by adherence and stimulated with OX8 (anti-CD8 antibody) or LPS. OX8 stimulation significantly increased the release of TNF, IL-10 and NO in both strains of rats, whereas MIP-1alpha and IL-12 release were increased in Brown Norway rats only. Interestingly, stimulated AM from Sprague Dawley rats released significantly more TNF and less IL-10, IL-12, IL-13, MIP-1alpha and NO compared with AM from Brown Norway rats. These differences were also observed at the mRNA level, except for TNF. Thus, AM from Brown Norway and Sprague Dawley rats are functionally different. Furthermore, LPS- and OX8-stimulated AM from Brown Norway rats produce more Th2 type cytokines (IL-10 and IL-13) than AM from Sprague Dawley rats, suggesting that these cells may play an important role in creating a cytokine milieu that may favour the development of allergic reactions.
Low-dose methotrexate (MTX) is an established and highly effective treatment for severe psoriasis and rheumatoid arthritis; however, its mechanism of action remains unclear. We investigated the effects of low-dose MTX on antigen-stimulated peripheral blood mononuclear cells and explored through which cellular pathways these effects are mediated. We show that MTX caused a dose-dependent suppression of T cell activation and adhesion molecule expression, and this was not due to lymphocyte apoptosis. The suppression of intercellular adhesion molecule (ICAM)-1 was adenosine and folate-dependent, while MTX suppression of the skin-homing cutaneous lymphocyte-associated antigen (CLA) was adenosine-independent. The effect of MTX on CLA, but not ICAM-1, required the constant presence of MTX in cultures. Thus, the suppression of T cell activation and T cell adhesion molecule expression, rather than apoptosis, mediated in part by adenosine or polyglutamated MTX or both, are important mechanisms in the anti-inflammatory action of MTX.
Association between IL-1beta/TNF-alpha-induced glucocorticoid-sensitive changes in multiple gene expression and altered responsiveness in airway smooth muscle.
The pleiotropic cytokines interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha have been implicated in the pathophysiology of asthma. To elucidate the role of these cytokines in the pro-asthmatic state, the effects of IL-1beta and TNF-alpha on airway smooth muscle (ASM) responsiveness and ASM expression of multiple genes, assessed by high-density oligonucleotide array analysis, were examined in the absence and presence of the glucocorticoid dexamethasone (DEX). Administration of IL-1beta/TNF-alpha increased ASM contractility to acetylcholine and impaired ASM relaxation to isoproterenol. These pro-asthmatic- like changes in ASM responsiveness were associated with IL-1beta/ TNF-alpha-induced mRNA expression of a host of proinflammatory genes that regulate transcription, cytokines and chemokines, cellular adhesion molecules, and various signal transduction molecules that regulate ASM responsiveness. In the presence of DEX, the changes induced in ASM responsiveness were abrogated, and most of the IL-1beta/TNF-alpha-mediated changes in proinflammatory gene expression were repressed, although mRNA expression of a small number of genes was enhanced by DEX. Collectively, the observations support the concept that, together with its role as a regulator of airway tone, in response to IL-1beta/TNF-alpha, the ASM expresses a host of glucocorticoid-sensitive genes that contribute to the altered structure and function of the airways in the pro-asthmatic state. We speculate that glucocorticoid-sensitive, cytokine-induced pathways involved in ASM cell signaling represent important targets for new therapeutic interventions.
We examined the association of gene expression with noncancer chronic disease outcomes in Mayak nuclear weapons plant workers who were exposed to radiation due to their occupation. We conducted a cross-sectional study with selection based on radiation exposure status of Mayak plant workers living in Ozyorsk who were alive in 2011 and either exposed to: combined incorporated Plutonium-239 ((239)Pu) and external gamma-ray exposure (n = 82); external gamma-ray exposure alone (n = 18); or were unexposed (n = 50) of Ozyorsk residents who provided community-based professional support for plant personnel and who were alive in 2011. Peripheral blood was taken and RNA was isolated and then converted into cDNA and stored at -20°C. In a previous analysis we screened the whole genome for radiation-associated candidate genes, and validated 15 mRNAs and 15 microRNAs using qRT-PCR. In the current analysis we examined the association of these genes with 15 different chronic diseases on 92 samples (47 males, 45 females). We examined the radiation-to-gene and gene-to-disease associations in statistical models stratified by gender and separately for each disease and exposure. We modeled radiation exposure as gamma or (239)Pu on both the continuous and categorical scales. Unconditional logistic regression was used to calculate odds ratios (OR), 95% confidence intervals (CI), and the concordance for genes that were significantly associated with radiation exposure and a specific disease outcome were identified. Altogether 12 mRNAs and 9 microRNAs appeared to be significantly associated with 6 diseases, including thyroid diseases (3 genes, OR: 1.2-5.1, concordance: 71-78%), atherosclerotic diseases (4 genes, OR: 2.5-10, concordance: 70-75%), kidney diseases (6 genes, OR: 1.3-8.6, concordance: 69-85%), cholelithiasis (3 genes, OR: 0.2-0.3, concordance: 74-75%), benign tumors [1 gene (AGAP4), OR: 3.7, concordance: 81%] and chronic radiation syndrome (4 genes, OR: 2.5-4.3, concordance: 70-99%). Further associations were found for systolic blood pressure (6 genes, OR: 3.7-10.6, concordance: 81-88%) and body mass index [1 gene (miR-484), OR: 3.7, concordance: 81%]. All associations were gender and exposure dependent. These findings suggest that gene expression changes observed after occupational prolonged radiation exposures may increase the risk for certain noncancer chronic diseases.
National Institutes of Natural Sciences, National Institute for Basic Biology, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan. taisen@nibb.ac.jp
Vitellogenin (VTG) protein, VTG mRNA, other egg yolk proteins, vitelline envelope proteins and their mRNAs are produced in the liver of oviparous species by stimulation of endogenous estrogen and exogenous estrogenic chemicals. The VTG assay based on enzyme-linked immunosorbent assay (ELISA) has been widely used for many fish species to screen estrogenic and anti-estrogenic activities of chemicals and sewage effluents using immature fish and/or male fish. In order to reduce the number of fish for screening of estrogenicity and anti-estrogenicity of chemicals, primary cultured fish hepatocytes can be used. In fact, primary cultured hepatocytes have been successfully used for the detection of estrogenic and anti-estrogenic activities of environmental chemicals in selected OECD fish species, e.g., medaka (Oryzias latipes) and rainbow trout (Oncorhynchys mykiss) together with other fish species such as Atlantic salmon (Salmo salar L.), Siberian sturgeon (Acipenser baeri), tilapia (Oreochromis mossambicus), carp (Cyprinus carpio), bream (Abramis brama), Carassius auratus, silver eel (Anguilla anguilla L.), and channel catfish (Ictalurus punctanus). In terms of hepatocyte assays relating to other taxa, these include frogs such as Xenopus laevis and the common green frog (Rana esculenta), chickens (Gallus domesticus) and herring gulls (Larus argentatus). VTG mRNA measurement by quantitative reverse transcription-polymerase chain reaction has also been successfully applied in the primary cultured hepatocytes of various species.