Skip header and navigation

1 records – page 1 of 1.

Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses.

https://arctichealth.org/en/permalink/ahliterature289926
Source
Viruses. 2017 06 02; 9(6):
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Date
06-02-2017
Author
Douwe S Maat
Tristan Biggs
Claire Evans
Judith D L van Bleijswijk
Nicole N van der Wel
Bas E Dutilh
Corina P D Brussaard
Author Affiliation
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and University of Utrecht, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands. douwe.maat@nioz.nl.
Source
Viruses. 2017 06 02; 9(6):
Date
06-02-2017
Language
English
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Keywords
Arctic Regions
Chlorophyta - virology
DNA, Viral - genetics
Phycodnaviridae - genetics - physiology - radiation effects
Temperature
Virus Replication - radiation effects
Abstract
Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming).
Notes
Cites: Environ Microbiol. 2006 Jun;8(6):1115-21 PMID 16689732
Cites: ISME J. 2017 Mar;11(3):601-612 PMID 28085157
Cites: Mol Syst Biol. 2011 Oct 11;7:539 PMID 21988835
Cites: Nucleic Acids Res. 2004 Feb 25;32(4):1363-71 PMID 14985472
Cites: ISME J. 2014 Oct;8(10):1953-61 PMID 24553471
Cites: J Eukaryot Microbiol. 2014 Nov-Dec;61(6):569-79 PMID 24996010
Cites: Nat Rev Microbiol. 2007 Oct;5(10):801-12 PMID 17853907
Cites: Appl Environ Microbiol. 2004 Mar;70(3):1506-13 PMID 15006772
Cites: Appl Environ Microbiol. 2014 May;80(10):3150-60 PMID 24632251
Cites: ISME J. 2013 Sep;7(9):1678-95 PMID 23575371
Cites: Virology. 1996 May 1;219(1):170-8 PMID 8623526
Cites: ISME J. 2017 Jun;11(6):1372-1385 PMID 28267153
Cites: ISME J. 2012 Aug;6(8):1480-98 PMID 22278671
Cites: Appl Microbiol. 1967 Jan;15(1):198 PMID 6031434
Cites: Can J Microbiol. 1978 Mar;24(3):321-4 PMID 647480
Cites: Curr Top Microbiol Immunol. 2009;328:1-42 PMID 19216434
Cites: Appl Environ Microbiol. 1999 Jan;65(1):45-52 PMID 9872758
Cites: J Phycol. 2013 Oct;49(5):996-1010 PMID 27007321
Cites: Appl Environ Microbiol. 1995 Aug;61(8):3088-91 PMID 16535105
Cites: Mol Biol Evol. 2006 Jan;23(1):23-9 PMID 16120798
Cites: Environ Microbiol Rep. 2015 Oct;7(5):765-73 PMID 26081716
Cites: PLoS One. 2016 Feb 19;11(2):e0148512 PMID 26895333
Cites: Appl Environ Microbiol. 2013 Oct;79(20):6253-9 PMID 23913432
Cites: J Phycol. 2008 Aug;44(4):902-8 PMID 27041608
Cites: BMC Genomics. 2016 Mar 31;17 :267 PMID 27029936
Cites: Proc Soc Exp Biol Med. 1961 Apr;106:736-8 PMID 13698695
Cites: Appl Environ Microbiol. 2000 Nov;66(11):4916-20 PMID 11055943
Cites: Extremophiles. 2003 Oct;7(5):377-84 PMID 12820036
Cites: Can J Microbiol. 1962 Apr;8:229-39 PMID 13902807
Cites: Appl Environ Microbiol. 2005 Jul;71(7):3599-607 PMID 16000767
Cites: Bioinformatics. 2014 May 1;30(9):1312-3 PMID 24451623
Cites: J Gen Virol. 2006 May;87(Pt 5):1375-83 PMID 16603541
Cites: ISME J. 2016 Jul;10 (7):1602-12 PMID 26943625
Cites: Appl Environ Microbiol. 2004 Jul;70(7):4064-72 PMID 15240284
Cites: J Mol Biol. 1990 Oct 5;215(3):403-10 PMID 2231712
Cites: Extremophiles. 2014 Jan;18(1):121-30 PMID 24297705
Cites: FEMS Microbiol Ecol. 2014 Sep;89(3):495-515 PMID 24754794
Cites: Science. 2015 May 22;348(6237):1261359 PMID 25999513
Cites: J Virol. 1974 Sep;14(3):689-99 PMID 4211861
Cites: EMBO Rep. 2006 Apr;7(4):385-9 PMID 16585939
Cites: Virology. 2004 Feb 20;319(2):280-91 PMID 14980488
Cites: Science. 2009 Apr 10;324(5924):268-72 PMID 19359590
Cites: Bioinformatics. 2009 Jul 15;25(14):1754-60 PMID 19451168
Cites: Environ Microbiol. 2008 Sep;10(9):2433-43 PMID 18537812
Cites: Syst Biol. 2010 May;59(3):307-21 PMID 20525638
Cites: Science. 2009 Oct 23;326(5952):539 PMID 19900890
Cites: Virology. 2005 Oct 10;341(1):80-90 PMID 16081120
PubMed ID
28574420 View in PubMed
Less detail