Skip header and navigation

7 records – page 1 of 1.

Source
Office of Naval Research, Naval Research Laboratory, Hunter College
Publication Type
Book/Book Chapter
Date
1999
Author
Crane, K
Galasso, JL
Author Affiliation
Office of Naval Research, Naval Research Laboratory, Hunter College
Source
Office of Naval Research, Naval Research Laboratory, Hunter College
Date
1999
Language
English
Geographic Location
Multi-National
Publication Type
Book/Book Chapter
Physical Holding
University of Alaska Anchorage
Keywords
Acidification
Arctic haze
Atmospheric transport
Biota
Cesium-137
Climate change
Heavy metals
Marine-life contamination pathways
Oceanic transport
Ozone depletion
Plutonium-239
Plutonium-240
Radionuclides
Riverine transport
Strontium-90
Terrestrial-life contamination pathways
Transport pathways
Abstract
This atlas of environmental information is intended to display graphically and make available to a wide audience the data and references to data compiled as a result of the Arctic Nuclear Waste Assessment Program (ANWAP).
Notes
Available at UAA/APU Consortium Library Alaskana Collection: Oversize TD196.R3 C7 1999
Less detail

Biological dosimetry of solar UV radiation in Antarctica using spores of Bacillus subtilis

https://arctichealth.org/en/permalink/ahliterature102199
Source
Pages 410-412 in G. Pétursdóttir et al., eds. Circumpolar Health 93. Proceedings of the 9th International Congress on Circumpolar Health, Reykjavík, Iceland, June 20-25, 1993. Arctic Medical Research. 1994;53(Suppl.2)
Publication Type
Article
Date
1994
, Kiiln, Germany. The significance of Antarctica in connection with glo- bal change - changes in the overall energy balance of the earth, ozone hole and greenhouse effect- has been increasing tremendously over the past decade. Season dependent stratospheric ozone depletion over Antarctica has been
  1 document  
Author
Puskeppeleit, M
Quintern, L
El Naggar, S
Schott, JU
Eschweiler, U
Honeck, G
Bücker, H
Bucker, H
Author Affiliation
German Society for Polar Medicine, Bremerhaven, FR Germany
German Aerospace Research Establishment (DLR-PT-USF), Bonn, FR Germany
Alfred Wegener Institute for Polar Marine Research, Bremerhaven, FR Germany
German Aerospace Research Establishment (DLR), Institute for Aerospace Medicine, Köln, Germany
Source
Pages 410-412 in G. Pétursdóttir et al., eds. Circumpolar Health 93. Proceedings of the 9th International Congress on Circumpolar Health, Reykjavík, Iceland, June 20-25, 1993. Arctic Medical Research. 1994;53(Suppl.2)
Date
1994
Language
English
Publication Type
Article
Digital File Format
Text - PDF
Keywords
Antarctica
Biological dosimetry
Bacillus subtilis
Concentrations
Exposure
Measurements
Ozone depletion
Seasonal trend
Solar light
UV radiation
Abstract
The main objective of our pilot study was to assess the influence of the seasonal stratospheric ozone depletion on the Antarctic UV climate by using bacterial spores. Using a biosystem as integrating UV detector, the wavelength is weighted by their cytotoxic effects without difficult setup of instruments necessary for physical dosimetry.
Documents
Less detail

Human interaction with the Antarctic environment: Studies in immunology, photobiology and epidemiology

https://arctichealth.org/en/permalink/ahliterature102198
Source
Pages 407-409 in G. Pétursdóttir et al., eds. Circumpolar Health 93. Proceedings of the 9th International Congress on Circumpolar Health, Reykjavík, Iceland, June 20-25, 1993. Arctic Medical Research. 1994;53(Suppl.2)
Publication Type
Article
Date
1994
environment and UV exposure and whether the outdoor clothing gives protection in Antarctica proposed studies are outlined. In assessing the health effects of ozone depletion it is important to review the incidences of UV -related disease in different latitudes as well as to compare latitudes in different
  1 document  
Author
Lugg, D
Author Affiliation
Australian Antarctic Division, Kingston, Tasmania, Australia
Source
Pages 407-409 in G. Pétursdóttir et al., eds. Circumpolar Health 93. Proceedings of the 9th International Congress on Circumpolar Health, Reykjavík, Iceland, June 20-25, 1993. Arctic Medical Research. 1994;53(Suppl.2)
Date
1994
Language
English
Publication Type
Article
Digital File Format
Text - PDF
Keywords
Antarctica
Environment
Epidemiology
Health effects
Immunology
Latitudes
Ozone depletion
Photobiology
UV exposure
Abstract
Interrelated studies on immunology, photobiology, and epidemiology carried out on the Australian National Antarctic Research Expeditions (ANARE) over the past decade are described. Although subjects generally spend from one to two years continuously in Antarctica, many return a number of times. In order to assess the long-term effects of the environment and UV exposure and whether the outdoor clothing gives protection in Antarctica, proposed studies are outlined. In assessing the health effects of ozone depletion it is important to review the incidences of UV -related disease in different latitudes as well as to compare latitudes in different hemispheres. Comparisons between North and South polar regions may be valuable for future management.
Documents
Less detail

Is increase in malignant melanoma a likely outcome of ozone depletion at northern latitudes? A behavioural perspective.

https://arctichealth.org/en/permalink/ahliterature102196
Source
Pages 393-396 in G. Pétursdóttir et al., eds. Circumpolar Health 93. Proceedings of the 9th International Congress on Circumpolar Health, Reykjavík, Iceland, June 20-25, 1993. Arctic Medical Research. 1994;53(Suppl.2)
Publication Type
Article
Date
1994
┬ąt1ic Mtdical Research .r1 .1.lSttpp/. 2. pp. 393-396, 1994 Is Increase in Malignant Melanoma a likely Outcome of Ozone Depletion at Northern Latitudes? A Behavioural Perspective . . .\.lbjOm Aasel and Graham Bentham2 ~I of Geography University of Trondheim, Norway. 2 Centre for Economic
  1 document  
Author
Aase, A
Bentham, G
Author Affiliation
Department of Geography, University of Trondheim, Norway
Centre for Social and Economic Research on the Global Environment (CSERGE), School of Environmental Sciences, University of East Anglia, Norwich, England
Source
Pages 393-396 in G. Pétursdóttir et al., eds. Circumpolar Health 93. Proceedings of the 9th International Congress on Circumpolar Health, Reykjavík, Iceland, June 20-25, 1993. Arctic Medical Research. 1994;53(Suppl.2)
Date
1994
Language
English
Geographic Location
Norway
Publication Type
Article
Digital File Format
Text - PDF
Keywords
Epidemiology
Incidence
Melanoma
Norway
Ozone depletion
Ultraviolet radiation
UV radiation
Abstract
Norway has the highest incidence of malignant melanoma in Europe in spite of the general trend of an increase towards the equator. This anomaly may be due to a combination of genetic and behavioral characteristics. Within the country, however, there is a decrease towards the north. No impact of ozone depletion on disease incidence has so far been observed. A future risk zone may be in environments far enough to the north for ozone depletion to be significant, yet warm enough for body exposure during leisure.
Documents
Less detail

Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

https://arctichealth.org/en/permalink/ahliterature120268
Source
Rev Environ Health. 2012;27(2-3):103-16
Publication Type
Article
Date
2012
Author
Mark A Dugo
Fengxiang Han
Paul B Tchounwou
Author Affiliation
Environmental Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering, Jackson State University, Jackson, MS 39217, USA.
Source
Rev Environ Health. 2012;27(2-3):103-16
Date
2012
Language
English
Publication Type
Article
Keywords
Air Pollutants
Animals
Health
Humans
Ozone - chemistry
Ozone Depletion - trends
Ultraviolet Rays - adverse effects
Abstract
Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR-mediated dysregulations of rhythmicity and homeostasis among animals, including humans.
Notes
Cites: Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2379-8410681464
Cites: C R Acad Sci III. 2000 Apr;323(4):365-7210803347
Cites: Annu Rev Pharmacol Toxicol. 2000;40:519-6110836146
Cites: Photochem Photobiol. 2000 Jun;71(6):758-6510857373
Cites: Science. 2001 Jan 12;291(5502):306-911209081
Cites: Mol Cell Biol. 2001 Apr;21(7):2594-60711259606
Cites: Science. 2001 Jul 20;293(5529):510-411441146
Cites: Biol Chem. 2011 Jul;392(7):643-5121627536
Cites: J Invest Dermatol. 2011 Jul;131(7):1420-721412259
Cites: Plant J. 2011 Jul;67(1):37-4821395889
Cites: PLoS One. 2011;6(6):e2135121731713
Cites: J Immunol. 2011 Jul 15;187(2):702-721670314
Cites: Exp Dermatol. 2011 Aug;20(8):664-821569103
Cites: Med Hypotheses. 2011 Aug;77(2):174-821530094
Cites: Expert Opin Drug Metab Toxicol. 2011 Oct;7(10):1267-9321883026
Cites: J Cell Biochem. 2005 Dec 15;96(6):1174-8416211578
Cites: Drug Metab Dispos. 2006 Jan;34(1):152-6516243960
Cites: J Pineal Res. 2006 Mar;40(2):158-6716441553
Cites: Toxicol Sci. 2006 Mar;90(1):96-11016330490
Cites: Mol Cell. 2006 May 5;22(3):375-8216678109
Cites: Mol Pharmacol. 2006 Jun;69(6):2076-8316556773
Cites: FASEB J. 2006 Jul;20(9):1564-616793870
Cites: Toxicol Sci. 2007 Jul;98(1):99-10917431010
Cites: Ecotoxicol Environ Saf. 2007 Sep;68(1):49-5616997375
Cites: FEBS Lett. 2007 Jul 31;581(19):3626-3317451689
Cites: Trends Cell Biol. 2007 Jul;17(7):311-717644383
Cites: Mol Cell Biol. 2007 Oct;27(20):7188-9717709388
Cites: Plant Cell. 2007 Aug;19(8):2662-7317720867
Cites: Chem Res Toxicol. 2008 Jan;21(1):102-1618076143
Cites: Pigment Cell Melanoma Res. 2008 Feb;21(1):79-8818353146
Cites: Toxicol Sci. 2007 Jan;95(1):172-8117020875
Cites: Photochem Photobiol Sci. 2007 Mar;6(3):218-3117344959
Cites: Photochem Photobiol Sci. 2007 Mar;6(3):267-8517344962
Cites: Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4814-917360370
Cites: Biochem Pharmacol. 2007 Jun 15;73(12):1853-6217266942
Cites: Proc Natl Acad Sci U S A. 2007 May 22;104(21):8851-617502624
Cites: Fish Physiol Biochem. 2010 Sep;36(3):605-2619609701
Cites: PLoS One. 2010;5(9):e1280520877728
Cites: Pigment Cell Melanoma Res. 2010 Dec;23(6):828-3320973933
Cites: J Invest Dermatol. 2011 Jan;131(1):203-1020861855
Cites: Cell Stem Cell. 2011 Feb 4;8(2):188-9921295275
Cites: Toxicol Lett. 2011 Mar 5;201(2):116-2221182907
Cites: Curr Opin Clin Nutr Metab Care. 2011 Jan;14(1):41-821102319
Cites: Toxicol Sci. 2011 Mar;120 Suppl 1:S49-7521059794
Cites: Semin Immunol. 2011 Apr;23(2):99-10521288737
Cites: Biopharm Drug Dispos. 2009 Oct;30(7):345-5519725016
Cites: Cancer Prev Res (Phila). 2009 Oct;2(10):895-90219789301
Cites: Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16523-819805330
Cites: Philos Trans R Soc Lond B Biol Sci. 2009 Nov 27;364(1534):3429-3819833653
Cites: Free Radic Biol Med. 2009 Nov 1;47(9):1304-919666107
Cites: FASEB J. 2010 Jan;24(1):39-4819720622
Cites: Photochem Photobiol Sci. 2010 Jan;9(1):18-2420062840
Cites: Mol Cell Biol. 2010 Feb;30(3):871-8419933842
Cites: J Invest Dermatol. 2010 Feb;130(2):362-7019675575
Cites: Mol Pharmacol. 2010 Feb;77(2):195-20119917880
Cites: Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2397-40220133754
Cites: Aging (Albany NY). 2009 Nov;1(11):937-4820157575
Cites: Biol Pharm Bull. 2010;33(3):389-9720190398
Cites: Int J Radiat Biol. 2010 Mar;86(3):181-620201646
Cites: Aquat Toxicol. 2010 Apr 1;97(1):3-1420047765
Cites: Toxicol Appl Pharmacol. 2010 Apr 1;244(1):1-320079756
Cites: Toxicol Appl Pharmacol. 2010 Apr 1;244(1):4-1520122947
Cites: Hormones (Athens). 2010 Jan-Mar;9(1):16-2720363718
Cites: Genes Dev. 2010 Apr 15;24(8):741-720395363
Cites: Toxicol Sci. 2010 May;115(1):98-10820106950
Cites: Aquat Toxicol. 2010 Jun 1;98(1):74-8220189255
Cites: J Theor Biol. 2010 Jun 7;264(3):1068-7620307551
Cites: Genes Dev. 2010 May 15;24(10):1045-5820478997
Cites: Toxicol Appl Pharmacol. 2010 Jun 15;245(3):326-3420350562
Cites: PLoS One. 2010;5(6):e1099520539819
Cites: J Invest Dermatol. 2010 Jul;130(7):1785-9620445552
Cites: Toxicol Mech Methods. 2010 Jul;20(6):279-8620507254
Cites: Tree Physiol. 2010 Jul;30(7):923-3420519675
Cites: Psychoneuroendocrinology. 2010 Aug;35(7):963-7620097011
Cites: Gastroenterology. 2010 Aug;139(2):653-6320303349
Cites: PLoS Genet. 2010 Aug;6(8). pii: e1001048. doi: 10.1371/journal.pgen.100104820700440
Cites: PLoS One. 2010;5(8):e1205920706594
Cites: J Biol Chem. 1999 Nov 19;274(47):33814-2410559277
Cites: J Invest Dermatol. 2000 Feb;114(2):328-3310651994
Cites: PLoS Comput Biol. 2008 Mar;4(3):e100001918369419
Cites: Cell Cycle. 2008 Feb 15;7(4):453-718235232
Cites: Cell Res. 2008 Jun;18(6):605-818516065
Cites: J Invest Dermatol. 2008 Jul;128(7):1773-918200051
Cites: Toxicol Sci. 2008 Sep;105(1):5-2318156145
Cites: J Biol Chem. 2009 Jan 30;284(5):2690-619054769
Cites: Biochem Pharmacol. 2009 Feb 15;77(4):508-2018848820
Cites: Annu Rev Plant Biol. 2009;60:407-3119400728
Cites: Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7251-619359492
Cites: Environ Int. 2009 Aug;35(6):971-8619375165
Cites: J Exp Bot. 2009;60(9):2501-1519414498
Cites: Sleep Med Rev. 2009 Aug;13(4):257-6419095474
Cites: Trends Immunol. 2009 Sep;30(9):447-5419699679
Cites: Toxicol Sci. 2009 Oct;111(2):199-20119628587
Cites: Chem Biol Interact. 2009 Oct 30;181(3):447-5419615353
Cites: Exp Biol Med (Maywood). 2011 Oct;236(10):1116-2121885479
Cites: Nature. 2011 Oct 27;478(7370):469-7521964337
Cites: J Invest Dermatol. 2012 Jan;132(1):59-6821753779
Cites: PLoS One. 2011;6(12):e2822722164247
Cites: Blood. 2011 Dec 15;118(25):6572-922039262
Cites: Mol Cell Endocrinol. 2012 Feb 5;349(1):38-4421664421
Cites: Physiol Plant. 2012 Feb;144(2):99-11021929631
Cites: J Invest Dermatol. 2012 Mar;132(3 Pt 2):976-8422170486
Cites: Science. 2012 Mar 23;335(6075):1492-622323738
Cites: Chem Res Toxicol. 2012 Apr 16;25(4):811-2422303888
Cites: Mol Plant. 2012 May;5(3):545-5322230762
Cites: Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1412-717227852
Cites: FEBS J. 2006 Jul;273(13):2813-3816817850
Cites: Am J Pathol. 2006 Sep;169(3):823-3016936259
Cites: Comp Biochem Physiol C Toxicol Pharmacol. 2006 Aug;143(4):363-8116769251
Cites: Nat Rev Genet. 2001 Sep;2(9):702-1511533719
Cites: Endocrinology. 2001 Nov;142(11):4910-711606459
Cites: Annu Rev Cell Dev Biol. 2001;17:215-5311687489
Cites: J Invest Dermatol. 2001 Nov;117(5):1171-811710929
Cites: Environ Health Perspect. 2002 Mar;110(3):277-8411882479
Cites: Annu Rev Biochem. 2002;71:307-3112045099
Cites: Mol Cell Biol. 2002 Aug;22(15):5492-50512101242
Cites: Gen Comp Endocrinol. 2002 Aug;128(1):1-2412270784
Cites: J Invest Dermatol. 2003 May;120(5):765-7012713578
Cites: Trends Plant Sci. 2003 May;8(5):197-912758033
Cites: Genes Dev. 2003 Aug 1;17(15):1882-9312869585
Cites: Biochem J. 2004 Jan 1;377(Pt 1):205-1314510636
Cites: Chronobiol Int. 2003 Nov;20(6):901-1914680135
Cites: FEBS Lett. 2004 Jan 16;557(1-3):259-6414741378
Cites: Dev Biol. 2004 Jun 1;270(1):64-7515136141
Cites: J Invest Dermatol. 2004 Sep;123(3):417-2515304077
Cites: J Invest Dermatol. 1983 May;80(5):416-96841998
Cites: Neurosci Lett. 1984 Aug 24;49(1-2):153-76493588
Cites: Gen Comp Endocrinol. 1985 Jul;59(1):130-93926601
Cites: J Reprod Fertil. 1988 May;83(1):91-83397961
Cites: J Biol Chem. 1990 Aug 25;265(24):14648-532387873
Cites: Biol Reprod. 1995 Mar;52(3):690-67756463
Cites: Recent Prog Horm Res. 1997;52:307-57; discussion 357-89238858
Cites: Gen Comp Endocrinol. 1997 Nov;108(2):223-369356218
Cites: Brain Res Bull. 1997;44(4):423-309370207
Cites: Proc Natl Acad Sci U S A. 1998 May 26;95(11):5884-909600888
Cites: J Biol Chem. 1999 May 7;274(19):13519-2410224120
Cites: Chem Biol Interact. 1999 Apr 1;118(2):127-4010359457
Cites: Microbiol Mol Biol Rev. 1999 Jun;63(2):479-50610357859
Cites: Mol Cell Biol. 2005 Apr;25(8):3109-1615798197
Cites: J Invest Dermatol. 2005 Apr;124(4):825-3215816842
Cites: Arch Pharm Res. 2005 Mar;28(3):249-6815832810
Cites: J Biol Chem. 2005 May 27;280(21):20340-815790560
Cites: Biochem Biophys Res Commun. 2005 Dec 9;338(1):311-716153594
PubMed ID
23023879 View in PubMed
Less detail

Risk perception related to depletion of the ozone layer and UV-B radiation in the arctic

https://arctichealth.org/en/permalink/ahliterature2914
Source
Pages 596-600 in R. Fortuine et al., eds. Circumpolar Health 96. Proceedings of the Tenth International Congress on Circumpolar Health, Anchorage, Alaska, 1996. Int J Circumpolar Health. 1998;57 Supp 1.
Publication Type
Article
Date
1998
Risk Perception Related to Depletion of the Ozone Layer and UV-B Radiation in the Arctic Arnulf Kolstad Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway Abstract: Increase in UV-B radiation, due to stratospheric ozone depletion, is an
  1 document  
Author
Kolstad, A.
Author Affiliation
Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
Source
Pages 596-600 in R. Fortuine et al., eds. Circumpolar Health 96. Proceedings of the Tenth International Congress on Circumpolar Health, Anchorage, Alaska, 1996. Int J Circumpolar Health. 1998;57 Supp 1.
Date
1998
Language
English
Geographic Location
Norway
Publication Type
Article
Digital File Format
Text - PDF
Physical Holding
University of Alaska Anchorage
Keywords
Norway
Ozone depletion
Risk perception
Sami
UV-B radiation
Abstract
Increase in UV-B radiation, due to stratospheric ozone depletion, is an environmental threat to arctic ecosystems and the health of their inhabitants. The aims of this longitudinal study are to provide basic population risk perception data related to UV-B and ozone depletion, and to compare the UV-B risk perception over time and with risk perception related to other objects and occurrences. A survey questionnaire, calling for a total of 118 judgments, measures risk perception, worries, and anticipated consequences. In the 1996 study, 143 persons completed the questionnaire, 34 of whom belong to the indigenous Sami population. Risk perception and the possibility of protecting oneself against 13 risks were measured on 7-point scales. The mean risk rating for depletion of the ozone layer and UV-B radiation was moderate to high. The possibility of protection was rated relatively low. Women, the youngest, and respondents in the North were most worried and perceived the highest risks. The Sami respondents are less worried and perceive a lower risk, a realistic short-term evaluation due to their protection by pigment in the skin and their clothing habits.
Documents
Less detail

Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles.

https://arctichealth.org/en/permalink/ahliterature298878
Source
Photochem Photobiol Sci. 2019 Mar 01; 18(3):747-774
Publication Type
Journal Article
Date
Mar-01-2019
Author
B Sulzberger
A T Austin
R M Cory
R G Zepp
N D Paul
Author Affiliation
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland. Barbara.Sulzberger@emeriti.eawag.ch.
Source
Photochem Photobiol Sci. 2019 Mar 01; 18(3):747-774
Date
Mar-01-2019
Language
English
Publication Type
Journal Article
Keywords
Animals
Arctic Regions
Atmosphere - analysis
Carbon - analysis
Carbon Dioxide - analysis
Climate change
Droughts
Ecosystem
Environmental Pollutants - analysis
Fresh Water - analysis
Global warming
Greenhouse Effect
Greenhouse Gases - analysis
Ice Cover - chemistry
Natural resources
Oceans and Seas
Ozone depletion
Photolysis
Solar Energy
Stratospheric Ozone - analysis
Ultraviolet Rays
Abstract
Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO2) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO2, including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes.
PubMed ID
30810562 View in PubMed
Less detail

7 records – page 1 of 1.