Skip header and navigation

2 records – page 1 of 1.

Climate Degradation and Extreme Icing Events Constrain Life in Cold-Adapted Mammals.

https://arctichealth.org/en/permalink/ahliterature296102
Source
Sci Rep. 2018 01 18; 8(1):1156
Publication Type
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Date
01-18-2018
Author
J Berger
C Hartway
A Gruzdev
M Johnson
Author Affiliation
Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA. jberger@wcs.org.
Source
Sci Rep. 2018 01 18; 8(1):1156
Date
01-18-2018
Language
English
Publication Type
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Keywords
Animals
Arctic Regions
Body Size
Climate Change - mortality
Cold Climate
Disasters - history
Female
History, 19th Century
History, 21st Century
Male
Otters - physiology
Rain
Ruminants - physiology
Snow
Tsunamis - history
Whales - physiology
Abstract
Despite the growth in knowledge about the effects of a warming Arctic on its cold-adapted species, the mechanisms by which these changes affect animal populations remain poorly understood. Increasing temperatures, declining sea ice and altered wind and precipitation patterns all may affect the fitness and abundance of species through multiple direct and indirect pathways. Here we demonstrate previously unknown effects of rain-on-snow (ROS) events, winter precipitation, and ice tidal surges on the Arctic's largest land mammal. Using novel field data across seven years and three Alaskan and Russian sites, we show arrested skeletal growth in juvenile muskoxen resulting from unusually dry winter conditions and gestational ROS events, with the inhibitory effects on growth from ROS events lasting up to three years post-partum. Further, we describe the simultaneous entombment of 52 muskoxen in ice during a Chukchi Sea winter tsunami (ivuniq in Iñupiat), and link rapid freezing to entrapment of Arctic whales and otters. Our results illustrate how once unusual, but increasingly frequent Arctic weather events affect some cold-adapted mammals, and suggest that an understanding of species responses to a changing Arctic can be enhanced by coalescing groundwork, rare events, and insights from local people.
Notes
Cites: Physiol Plant. 2010 Oct;140(2):128-40 PMID 20497369
Cites: Science. 2009 Sep 11;325(5946):1355-8 PMID 19745143
Cites: Sci Rep. 2015 Mar 02;5:8676 PMID 25728642
Cites: Philos Trans R Soc Lond B Biol Sci. 2014 Apr 14;369(1643):20130196 PMID 24733951
Cites: Nature. 2012 Jul 19;487(7407):358-61 PMID 22763443
Cites: Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17905-9 PMID 22025683
Cites: Science. 2013 Jan 18;339(6117):313-5 PMID 23329044
Cites: Conserv Biol. 2012 Oct;26(5):769-77 PMID 22834930
Cites: Science. 2016 Sep 9;353(6304): PMID 27609898
Cites: Science. 2013 Aug 2;341(6145):519-24 PMID 23908231
Cites: Animal. 2009 May;3(5):657-69 PMID 22444443
Cites: Science. 2016 Jun 10;352(6291):1274-5 PMID 27284180
Cites: Biol Lett. 2016 Nov;12 (11): PMID 27852939
Cites: Trends Ecol Evol. 2001 May 1;16(5):254-260 PMID 11301155
Cites: Ambio. 2006 Nov;35(7):347-58 PMID 17256639
Cites: Semin Fetal Neonatal Med. 2004 Oct;9(5):419-25 PMID 15691778
Cites: Proc Biol Sci. 1998 Feb 22;265(1393):341-50 PMID 9523435
PubMed ID
29348632 View in PubMed
Less detail

Loss of genetic diversity in sea otters (Enhydra lutris) associated with the fur trade of the 18th and 19th centuries.

https://arctichealth.org/en/permalink/ahliterature3308
Source
Mol Ecol. 2002 Oct;11(10):1899-903
Publication Type
Article
Date
Oct-2002
Author
Shawn Larson
Ronald Jameson
Michael Etnier
Melissa Fleming
Paul Bentzen
Author Affiliation
The Seattle Aquarium, 1483 Alaskan Way, Pier 59, Seattle, WA 98101, USA. shawn.larson@ci.seattle.wa.us
Source
Mol Ecol. 2002 Oct;11(10):1899-903
Date
Oct-2002
Language
English
Publication Type
Article
Keywords
Animals
Animals, Wild
Bone and Bones
Commerce - history
DNA, Mitochondrial - genetics
Genetics, Population
Hair
History, 18th Century
History, 19th Century
Microsatellite Repeats - genetics
Otters - genetics
Paleontology
Population Dynamics
Research Support, Non-U.S. Gov't
Variation (Genetics) - genetics
Abstract
Sea otter (Enhydra lutris) populations experienced widespread reduction and extirpation due to the fur trade of the 18th and 19th centuries. We examined genetic variation within four microsatellite markers and the mitochondrial DNA (mtDNA) d-loop in one prefur trade population and compared it to five modern populations to determine potential losses in genetic variation. While mtDNA sequence variability was low within both modern and extinct populations, analysis of microsatellite allelic data revealed that the prefur trade population had significantly more variation than all the extant sea otter populations. Reduced genetic variation may lead to inbreeding depression and we believe sea otter populations should be closely monitored for potential associated negative effects.
PubMed ID
12296934 View in PubMed
Less detail