River otters (Lontra canadensis) were extirpated from much of their historic distribution because of exposure to pollution and urbanization, resulting in expansive reintroduction programmes that continue today for this and other species of otters worldwide. Bioaccumulation of toxins negatively affects fecundity among mustelids, but high vagility and different dispersal distances between genders may permit otter populations to recover from extirpation caused by localized environmental pollution. Without understanding the influence of factors such as social structure and sex-biased dispersal on genetic variation and gene flow among populations, effects of local extirpation and the potential for natural recolonization (i.e. the need for translocations) cannot be assessed. We studied gene flow among seven study areas for river otters (n = 110 otters) inhabiting marine environments in Prince William Sound, Alaska, USA. Using nine DNA microsatellite markers and assignment tests, we calculated immigration rates and dispersal distances and tested for isolation by distance. In addition, we radiotracked 55 individuals in three areas to determine characteristics of dispersal. Gender differences in sociality and spatial relationships resulted in different dispersal distances. Male river otters had greater gene flow among close populations (within 16-30 km) mostly via breeding dispersal, but both genders exhibited an equal, low probability of natal dispersal; and some females dispersed 60-90 km. These data, obtained in a coastal environment without anthropogenic barriers to dispersal (e.g. habitat fragmentation or urbanization), may serve as baseline data for predicting dispersal under optimal conditions. Our data may indicate that natural recolonization of coastal river otters following local extirpation could be a slow process because of low dispersal among females, and recolonization may be substantially delayed unless viable populations occurred nearby. Because of significant isolation by distance for male otters and low gene flow for females, translocations should be undertaken with caution to help preserve genetic diversity in this species.
Orcas Island Office, University of California-Davis Wildlife Health Center, 1016 Deer Harbor Road, Eastsound, Washington 98245, USA. jkgaydos@ucdavis.edu
Species of Cryptosporidium and Giardia can infect humans and wildlife and have the potential to be transmitted between these 2 groups; yet, very little is known about these protozoans in marine wildlife. Feces of river otters (Lontra canadensis), a common marine wildlife species in the Puget Sound Georgia Basin, were examined for species of Cryptosporidium and Giardia to determine their role in the epidemiology of these pathogens. Using ZnSO4 flotation and immunomagnetic separation, followed by direct immunofluorescent antibody detection (IMS/DFA), we identified Cryptosporidium sp. oocysts in 9 fecal samples from 6 locations and Giardia sp. cysts in 11 fecal samples from 7 locations. The putative risk factors of proximate human population and degree of anthropogenic shoreline modification were not associated with the detection of Cryptosporidium or Giardia spp. in river otter feces. Amplification of DNA from the IMS/DFA slide scrapings was successful for 1 sample containing > 500 Cryptosporidium sp. oocysts. Sequences from the Cryptosporidium 18S rRNA and the COWP loci were most similar to the ferret Cryptosporidium sp. genotype. River otters could serve as reservoirs for Cryptosporidium and Giardia species in marine ecosystems. More work is needed to better understand the zoonotic potential of the genotypes they carry as well as their implications for river otter health.
Ranch-reared mink (Mustela vison) were used as a model in an experimental trial to investigate the potential effects of exposure to two petroleum products on sea otters (Enhydra lutris). Mink were exposed either dermally on one occasion 60 days prior to breeding or via low level contamination of their diets daily from 60 days prior to breeding (January 1994) until weaning of kits (June 1994). For dermal exposure, we placed mink in either a slick of Alaskan North Slope crude oil (n = 24) or bunker C fuel oil (n = 24) on sea water or sea water alone (n = 10) for 1 min. For dietary exposure, we fed mink rations containing 500 ppm of either Alaskan North Slope crude oil (n = 24) or bunker C fuel oil (n = 24; control, n = 15). The number of liveborn kits did not differ significantly among mink exposed dermally (5.0 kits/female for crude oil and 6.5 kits/female for bunker C fuel oil) and unexposed controls (5.3 kits/female). However, only 2.3 and 0.7 kits were produced per female for those exposed through the diet to crude oil and bunker C fuel oil, respectively. Females with reduced reproductive success had no clinical signs of toxicosis or behavioral abnormalities. In addition, kits of females exposed through the diet had poor survival to weaning. Once mature, kits born to females exposed to bunker C fuel oil in the diet had significantly reduced reproductive success (3.4 kits/female) although their only exposure to the petroleum products was in utero or during nursing. Therefore, it is possible that sea otter populations consuming contaminated food sources or colonizing previously oiled habitats will have reduced reproductive success.
Levels of blood haptoglobin (Hp) and interleukin-6 immunoreactive protein (IL-6 ir) were significantly elevated in river otters (Lutra canadensis) inhabiting oiled areas of Prince William Sound, Alaska (USA) following the Exxon Valdez oil spill in 1989. By May and June 1992, however, such differences were not apparent. Mean body mass of otters, adjusted for sex, age-class, and total length with analysis of covariance, differed between oiled and non-oiled areas from 1990 to 1992, but were nearly identical by May and June 1992. We propose that river otters may be recovering from chronic effects that we observed in 1990 and 1991 following the 1989 Exxon Valdez oil spill, but further research is necessary to test this hypothesis.
We sought to take a first step toward better integration of social concerns into empirical ecosystem service (ES) work. We did this by adapting cognitive anthropological techniques to study the Clayoquot Sound social-ecological system on the Pacific coast of Canada's Vancouver Island. We used freelisting and ranking exercises to elicit how locals perceive ESs and to determine locals' preferred food species. We analyzed these data with the freelist-analysis software package ANTHROPAC. We considered the results in light of an ongoing trophic cascade caused by the government reintroduction of sea otters (Enhydra lutris) and their spread along the island's Pacific coast. We interviewed 67 local residents (n = 29 females, n = 38 males; n = 26 self-identified First Nation individuals, and n = 41 non-First Nation individuals) and 4 government managers responsible for conservation policy in the region. We found that the mental categories participants-including trained ecologists-used to think about ESs, did not match the standard academic ES typology. With reference to the latest ecological model projections for the region, we found that First Nations individuals and women were most likely to perceive the most immediate ES losses from the trophic cascade, with the most certainty. The inverse was found for men and non-First Nations individuals, generally. This suggests that 2 historically disadvantaged groups (i.e., First Nations and women) are poised to experience the immediate impacts of the government-initiated trophic cascade as yet another social injustice in a long line of perceived inequities. Left unaddressed, this could complicate efforts at multistakeholder ecosystem management in the region.
Marine mammals being among the top predators in the food web tend to accumulate organic and inorganic contaminants from the environment. The body burden of contaminants in these species could reflect their foods and thus contaminant levels could serve as proxies on the changes of ecosystem. A pilot study was carried out to investigate the possibility of radionuclide leakage at Amchitka using a suite of sea otter (Enhydra lutris) skulls collected near Amchitka nuclear test-sites before (1950s) and after the testing (1990s), and at Adak, another Aleutian Island, about 300 km from Amchitka, where the potential impact of radionuclide leakage from Amchitka is expected to be negligible. In addition, the naturally occurring and anthropogenic radionuclide content on the sea otter skull was also utilized to investigate if there was any significant ecosystem changes in the environment. Concentration of 210Pb in sea otter bones collected during the 1950s was significantly higher than those collected in the 1990s. We propose that among the various factors that could cause this higher enrichment in 210Pb, changes in the sea otter prey is the most likely one. Comparison of the 137Cs, 90Sr, 239,240Pu concentrations appear not to be significantly higher in sea otter skulls collected in 1990s from Amchitka where the underground tests in 1965-71 than those from Adak, although significant differences were detected among different groups collected at various times.