Skip header and navigation

Refine By

4 records – page 1 of 1.

Bartonella spp. exposure in northern and southern sea otters in Alaska and California.

https://arctichealth.org/en/permalink/ahliterature265772
Source
Vector Borne Zoonotic Dis. 2014 Dec;14(12):831-7
Publication Type
Article
Date
Dec-2014
Author
Sebastian E Carrasco
Bruno B Chomel
Verena A Gill
Angela M Doroff
Melissa A Miller
Kathleen A Burek-Huntington
Rickie W Kasten
Barbara A Byrne
Tracey Goldstein
Jonna A K Mazet
Source
Vector Borne Zoonotic Dis. 2014 Dec;14(12):831-7
Date
Dec-2014
Language
English
Publication Type
Article
Keywords
Alaska - epidemiology
Animals
Antibodies, Bacterial - blood
Bartonella - immunology
Bartonella Infections - blood - epidemiology - veterinary
California - epidemiology
Fluorescent Antibody Technique, Indirect - veterinary
Otters - blood - microbiology
Seroepidemiologic Studies
Abstract
Since 2002, an increased number of northern sea otters (Enhydra lutris kenyoni) from southcentral Alaska have been reported to be dying due to endocarditis and/or septicemia with infection by Streptococcus infantarius subsp. coli. Bartonella spp. DNA was also detected in northern sea otters as part of mortality investigations during this unusual mortality event (UME) in Kachemak Bay, Alaska. To evaluate the extent of exposure to Bartonella spp. in sea otters, sera collected from necropsied and live-captured northern sea otters, as well as necropsied southern sea otters (Enhydra lutris nereis) unaffected by the UME, were analyzed using an immunofluorescent antibody assay. Antibodies against Bartonella spp. were detected in sera from 50% of necropsied and 34% of presumed healthy, live-captured northern sea otters and in 16% of necropsied southern sea otters. The majority of sea otters with reactive sera were seropositive for B. washoensis, with antibody titers ranging from 1:64 to 1:256. Bartonella spp. antibodies were especially common in adult northern sea otters, both free-living (49%) and necropsied (62%). Adult stranded northern sea otters that died from infectious causes, such as opportunistic bacterial infections, were 27 times more likely to be Bartonella seropositive than adult stranded northern sea otters that died from noninfectious causes (p
Notes
Cites: J Clin Microbiol. 2004 Jul;42(7):3346-915243113
Cites: J Wildl Dis. 2011 Apr;47(2):278-9221441180
Cites: J Wildl Dis. 2011 Jul;47(3):579-9221719822
Cites: J Clin Microbiol. 2012 Dec;50(12):4131-323052307
Cites: Vet Microbiol. 2014 Jun 4;170(3-4):325-3424629902
Cites: Clin Microbiol Rev. 2000 Jul;13(3):428-3810885985
Cites: J Clin Microbiol. 2000 Nov;38(11):4193-20011060089
Cites: Clin Diagn Lab Immunol. 2002 Sep;9(5):1004-912204950
Cites: J Wildl Dis. 2003 Jul;39(3):495-50914567210
Cites: J Clin Microbiol. 2003 Nov;41(11):5327-3214605197
Cites: J Vet Intern Med. 2004 Jan-Feb;18(1):56-6414765733
Cites: J Clin Microbiol. 2004 Feb;42(2):652-914766832
Cites: J Clin Microbiol. 1995 Sep;33(9):2445-507494043
Cites: J Clin Microbiol. 1996 Sep;34(9):2270-48862597
Cites: Am J Vet Res. 1997 May;58(5):467-719140552
Cites: Parasitology. 1998 Oct;117 ( Pt 4):393-4039820861
Cites: Emerg Infect Dis. 1999 Sep-Oct;5(5):711-510511529
Cites: Vet Res. 2005 May-Jun;36(3):383-41015845231
Cites: J Am Vet Med Assoc. 2006 Jun 1;228(11):1723-3416740074
Cites: J Clin Microbiol. 2007 Aug;45(8):2411-817553970
Cites: Vet Res. 2009 Mar-Apr;40(2):2919284965
Cites: J Wildl Dis. 2008 Oct;44(4):871-718957643
Cites: Int J Parasitol. 2008 Sep;38(11):1319-2818452923
Cites: Emerg Infect Dis. 2009 Jun;15(6):925-719523293
Cites: Vet Res. 2010 Jan-Feb;41(1):119720009
Cites: Vector Borne Zoonotic Dis. 2009 Dec;9(6):751-319402763
Cites: J Vet Emerg Crit Care (San Antonio). 2010 Feb;20(1):8-3020230432
Cites: J Med Microbiol. 2010 Jun;59(Pt 6):743-520223899
Cites: J Wildl Dis. 2010 Jul;46(3):947-5020688703
Cites: Vet Parasitol. 2010 Sep 20;172(3-4):183-9420615616
PubMed ID
25514118 View in PubMed
Less detail

Climate Degradation and Extreme Icing Events Constrain Life in Cold-Adapted Mammals.

https://arctichealth.org/en/permalink/ahliterature296102
Source
Sci Rep. 2018 01 18; 8(1):1156
Publication Type
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Date
01-18-2018
Author
J Berger
C Hartway
A Gruzdev
M Johnson
Author Affiliation
Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA. jberger@wcs.org.
Source
Sci Rep. 2018 01 18; 8(1):1156
Date
01-18-2018
Language
English
Publication Type
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Keywords
Animals
Arctic Regions
Body Size
Climate Change - mortality
Cold Climate
Disasters - history
Female
History, 19th Century
History, 21st Century
Male
Otters - physiology
Rain
Ruminants - physiology
Snow
Tsunamis - history
Whales - physiology
Abstract
Despite the growth in knowledge about the effects of a warming Arctic on its cold-adapted species, the mechanisms by which these changes affect animal populations remain poorly understood. Increasing temperatures, declining sea ice and altered wind and precipitation patterns all may affect the fitness and abundance of species through multiple direct and indirect pathways. Here we demonstrate previously unknown effects of rain-on-snow (ROS) events, winter precipitation, and ice tidal surges on the Arctic's largest land mammal. Using novel field data across seven years and three Alaskan and Russian sites, we show arrested skeletal growth in juvenile muskoxen resulting from unusually dry winter conditions and gestational ROS events, with the inhibitory effects on growth from ROS events lasting up to three years post-partum. Further, we describe the simultaneous entombment of 52 muskoxen in ice during a Chukchi Sea winter tsunami (ivuniq in Iñupiat), and link rapid freezing to entrapment of Arctic whales and otters. Our results illustrate how once unusual, but increasingly frequent Arctic weather events affect some cold-adapted mammals, and suggest that an understanding of species responses to a changing Arctic can be enhanced by coalescing groundwork, rare events, and insights from local people.
Notes
Cites: Physiol Plant. 2010 Oct;140(2):128-40 PMID 20497369
Cites: Science. 2009 Sep 11;325(5946):1355-8 PMID 19745143
Cites: Sci Rep. 2015 Mar 02;5:8676 PMID 25728642
Cites: Philos Trans R Soc Lond B Biol Sci. 2014 Apr 14;369(1643):20130196 PMID 24733951
Cites: Nature. 2012 Jul 19;487(7407):358-61 PMID 22763443
Cites: Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17905-9 PMID 22025683
Cites: Science. 2013 Jan 18;339(6117):313-5 PMID 23329044
Cites: Conserv Biol. 2012 Oct;26(5):769-77 PMID 22834930
Cites: Science. 2016 Sep 9;353(6304): PMID 27609898
Cites: Science. 2013 Aug 2;341(6145):519-24 PMID 23908231
Cites: Animal. 2009 May;3(5):657-69 PMID 22444443
Cites: Science. 2016 Jun 10;352(6291):1274-5 PMID 27284180
Cites: Biol Lett. 2016 Nov;12 (11): PMID 27852939
Cites: Trends Ecol Evol. 2001 May 1;16(5):254-260 PMID 11301155
Cites: Ambio. 2006 Nov;35(7):347-58 PMID 17256639
Cites: Semin Fetal Neonatal Med. 2004 Oct;9(5):419-25 PMID 15691778
Cites: Proc Biol Sci. 1998 Feb 22;265(1393):341-50 PMID 9523435
PubMed ID
29348632 View in PubMed
Less detail

Does human proximity affect antibody prevalence in marine-foraging river otters (Lontra canadensis)?

https://arctichealth.org/en/permalink/ahliterature78527
Source
J Wildl Dis. 2007 Jan;43(1):116-23
Publication Type
Article
Date
Jan-2007
Author
Gaydos Joseph K
Conrad Patricia A
Gilardi Kirsten V K
Blundell Gail M
Ben-David Merav
Author Affiliation
University of California, Davis, Wildlife Health Center, Orcas Island Office, School of Veterinary Medicine, University of California, Davis, 1016 Deer Harbor Road, Eastsound, Washington 98245, USA. jkgaydos@ucdavis.edu
Source
J Wildl Dis. 2007 Jan;43(1):116-23
Date
Jan-2007
Language
English
Publication Type
Article
Keywords
Animals
Animals, Wild
Antibodies, Bacterial - blood
Antibodies, Protozoan - blood
Antibodies, Viral - blood
Conservation of Natural Resources
Environment
Female
Humans
Leptospira interrogans - immunology
Leptospirosis - epidemiology - veterinary
Male
Otters - microbiology - parasitology - virology
Population Density
Sentinel Surveillance - veterinary
Seroepidemiologic Studies
Toxoplasma - immunology
Toxoplasmosis, Animal - epidemiology
Abstract
The investigation of diseases of free-ranging river otters (Lontra canadensis) is a primary conservation priority for this species; however, very little is known about diseases of river otters that forage in marine environments. To identify and better understand pathogens that could be important to marine-foraging river otters, other wildlife species, domestic animals, and humans and to determine if proximity to human population could be a factor in disease exposure, serum samples from 55 free-ranging marine-foraging river otters were tested for antibodies to selected pathogens. Thirty-five animals were captured in Prince William Sound, Alaska (USA), an area of low human density, and 20 were captured in the San Juan Islands, Washington State (USA), an area characterized by higher human density. Of 40 river otters tested by indirect immunofluorescent antibody test, 17.5% were seropositive (titer > or =320) for Toxoplasma gondii. All positive animals came from Washington. Of 35 river otters tested for antibodies to Leptospira interrogans using the microscopic agglutination test, 10 of 20 (50%) from Washington were seropositive (titer > or =200). None of the 15 tested animals from Alaska were positive. Antibodies to Neospora caninum (n=40), Sarcocystis neurona (n=40), Brucella abortus (n=55), avian influenza (n=40), canine distemper virus (n=55), phocine distemper virus (n=55), dolphin morbillivirus (n=55), porpoise morbillivirus (n=55), and Aleutian disease parvovirus (n=46) were not detected. Identifying exposure to T. gondii and L. interrogans in otters from Washington State but not in otters from Alaska suggests that living proximal to higher human density and its associated agricultural activities, domestic animals, and rodent populations could enhance river otter exposure to these pathogens.
PubMed ID
17347401 View in PubMed
Less detail

Recent changes in body size of the Eurasian otter Lutra lutra in Sweden.

https://arctichealth.org/en/permalink/ahliterature100035
Source
Ambio. 2010 Nov;39(7):496-503
Publication Type
Article
Date
Nov-2010
Author
Yoram Yom-Tov
Anna Roos
Peter Mortensen
Ã?ystein Wiig
Shlomith Yom-Tov
Thrine M Heggberget
Author Affiliation
Department of Zoology, Tel Aviv University, Israel. yomtov@post.tau.ac.il
Source
Ambio. 2010 Nov;39(7):496-503
Date
Nov-2010
Language
English
Publication Type
Article
Keywords
Animals
Body Size
Female
Global warming
Ice Cover
Male
Otters - growth & development
Sweden
Abstract
We studied geographical and temporal body size trends among 169 adult museum specimens of the Eurasian otter (Lutra lutra) collected in Sweden between 1962 and 2008, whose sex, year of collection, and locality were known. Skull size and body mass increased significantly in relation to the year of collection, and skull size (but not body mass) was significantly and negatively related to latitude, contrasting Bergmann's rule and the trend found for Norwegian otters. Latitudinal differences in body size between the two countries may be due to differences in food availability. The temporal increase in body size among Swedish otters resembled that observed for Norway otters, though Swedish otters are smaller with respect to their Norwegian counterparts. Latitude and year represent a combination of environmental factors, including ambient temperature in the year of collection as well as the number of days of ice coverage. We replaced the above factors with mean annual temperature or the number of days of ice coverage, and found that each of these factors explains a similar proportion of the variation in body size as did latitude and year. We hypothesize that this temporal increase in body size is related to a combination of factors, including reduced energy expenditure resulting from increasing ambient temperature, and increased food availability from longer ice-free periods.
PubMed ID
21090004 View in PubMed
Less detail