Skip header and navigation

Refine By

40 records – page 1 of 4.

Brucella Infection in Asian Sea Otters (Enhydra lutris lutris) on Bering Island, Russia.

https://arctichealth.org/en/permalink/ahliterature290856
Source
J Wildl Dis. 2017 10; 53(4):864-868
Publication Type
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Date
10-2017
Author
Tristan L Burgess
Christine Kreuder Johnson
Alexander Burdin
Verena A Gill
Angela M Doroff
Pamela Tuomi
Woutrina A Smith
Tracey Goldstein
Author Affiliation
1 Karen C. Drayer Wildlife Health Center, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, California 95965, USA.
Source
J Wildl Dis. 2017 10; 53(4):864-868
Date
10-2017
Language
English
Publication Type
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Keywords
Animals
Bayes Theorem
Brucella - classification - genetics - isolation & purification
Brucellosis - epidemiology - microbiology - veterinary
DNA, Bacterial - isolation & purification
Female
Islands - epidemiology
Male
Markov Chains
Monte Carlo Method
Otters - microbiology
Phylogeny
Polymerase Chain Reaction - veterinary
Rectum - microbiology
Russia - epidemiology
Seroepidemiologic Studies
Abstract
Infection with Brucella spp., long known as a cause of abortion, infertility, and reproductive loss in domestic livestock, has increasingly been documented in marine mammals over the past two decades. We report molecular evidence of Brucella infection in Asian sea otters (Enhydra lutris lutris). Brucella DNA was detected in 3 of 78 (4%) rectal swab samples collected between 2004 and 2006 on Bering Island, Russia. These 78 animals had previously been documented to have a Brucella seroprevalence of 28%, markedly higher than the prevalence documented in sea otters (Enhydra lutris) in North America. All of the DNA sequences amplified were identical to one or more previously isolated Brucella spp. including strains from both terrestrial and marine hosts. Phylogenetic analysis of this sequence suggested that one animal was shedding Brucella spp. DNA with a sequence matching a Brucella abortus strain, whereas two animals yielded a sequence matching a group of strains including isolates classified as Brucella pinnipedialis and Brucella melitensis. Our results highlight the diversity of Brucella spp. within a single sea otter population.
PubMed ID
28715292 View in PubMed
Less detail

Body size changes among otters, Lutra lutra, in Norway: the possible effects of food availability and global warming.

https://arctichealth.org/en/permalink/ahliterature81316
Source
Oecologia. 2006 Nov;150(1):155-60
Publication Type
Article
Date
Nov-2006
Author
Yom-Tov Yoram
Heggberget Thrine Moen
Wiig Oystein
Yom-Tov Shlomith
Author Affiliation
Department of Zoology, Tel Aviv University, Tel Aviv, 69978, Israel. yomtov@post.tau.ac.il
Source
Oecologia. 2006 Nov;150(1):155-60
Date
Nov-2006
Language
English
Publication Type
Article
Keywords
Animals
Body Size - physiology
Diet
Geography
Greenhouse Effect
Norway
Otters - physiology
Regression Analysis
Abstract
Using museum data of adult specimens whose sex, age, and locality are known, we studied temporal and geographical body size trends among the otter, Lutra lutra, in Norway. We found that body size of the otters increased during the last quarter of the twentieth century, and suggest that this trend is related to increased food availability from fish farming and possibly also to energy saving due to elevated sea temperatures. Birth year and death year explained 38.8 and 43.5%, respectively, of the variation in body size. Body size of otters was positively related to latitude, thus conforming to Bergmann's rule.
PubMed ID
16868759 View in PubMed
Less detail

Studies on the helminth fauna of Alaska. XVII. Notes on the intermediate stages of some helminth parasites of the sea otter

https://arctichealth.org/en/permalink/ahliterature99647
Source
Biological Bulletin. 1954 Feb;106(1):107-121
Publication Type
Article
Date
Feb-1954
  1 website  
Author
Schiller, EL
Author Affiliation
Arctic Health Research Center
Source
Biological Bulletin. 1954 Feb;106(1):107-121
Date
Feb-1954
Language
English
Geographic Location
U.S.
Publication Type
Article
Keywords
Aleutian Island
Amchitka
Enhydra lutris
Excysted larvae
Greenling
Helminth parasites
Marine invertebrates
Microphallus pirum
Mortality
Nematode infections
Porrocaecum decipiens
Sculpin
Sea otters
Trematode metacercariae
Abstract
According to the work of Rausch (1953) , two species of helminth parasites, Porrocaecum decipiens (Krabbe, 1878) and Microphallus pirum (Afanas'ev, 1941), are pathogenic for the sea otter, Enhydra lutris (L.) , on the Aleutian Island of Amchitka. In continuation of investigations of sea otter mortality on Amchitka during the latter part of May and early June, 1952, the writer made an attempt to obtain information on the life cycles and developmental characteristics of these parasites. It is the purpose of this paper to report the results of these observations.
Online Resources
Less detail

Studies on the helminth fauna of Alaska. XIII. Disease in the sea otter, with special reference to helminth parasites

https://arctichealth.org/en/permalink/ahliterature99651
Source
Ecology. 1953 Jul;34(3):584-604
Publication Type
Article
Date
Jul-1953
  1 website  
Author
Rausch, R
Author Affiliation
Arctic Health Research Center
Source
Ecology. 1953 Jul;34(3):584-604
Date
Jul-1953
Language
English
Geographic Location
U.S.
Publication Type
Article
Keywords
Aleutian Island
Amchitka
Enhydra lutris
Helminth parasites
Histopathological study
Morbidity
Rat Islands
Sea otter
U.S. Fish and Wildlife Service
Abstract
During the spring of 1951, the U.S. Fish and Wildlife Service undertook the removal of sea otter, Enhydra lutris (L.), from the Aleutian Island of Amchitka, for the purpose of restocking range from which the animals have long been exterminated. The decision to undertake this activity was influenced by the nature of military operations planned for the island later the same year. The capture and removal of the otter were under the supervision of Mr. Robert D. Jones, Biologist, U.S. Fish and Wildlife Service. Heavy losses among the animals shortly after capture made the venture unsuccessful. Many deaths were concurrent among animals in the wild state. The writer was asked to investigate the causes of disease in the sea otter, and it is the purpose of this paper to report the results of these investigations.
Online Resources
Less detail
Source
Chapter 6, pages 88-97, Art of the Northern Tlingit, published by University of Washington Press
Publication Type
Book/Book Chapter
Date
1986
Author
Jonaitis, A.
Source
Chapter 6, pages 88-97, Art of the Northern Tlingit, published by University of Washington Press
Date
1986
Language
English
Geographic Location
U.S.
Publication Type
Book/Book Chapter
Physical Holding
University of Alaska Anchorage
Keywords
Crest and noncrest yek
Devilfish
Land otter
Mountain goats
Profane animals
Sacred animals
Tlingit animals
Water and shore birds
Yek
Abstract
The crest animal embodies all that man controls; it is the visual symbol of the social order. Animals of the supernatural domain, the yek controlled by shamans, differ considerably from crest animals. The Tlingit shaman encounters the yek animal on his vision quest, transforms into it during his masking ritual, and interacts continually with it.
Notes
Reference book found in Alaskana Collection: E99.T6 J65 1986
Less detail

Bartonella spp. exposure in northern and southern sea otters in Alaska and California.

https://arctichealth.org/en/permalink/ahliterature265772
Source
Vector Borne Zoonotic Dis. 2014 Dec;14(12):831-7
Publication Type
Article
Date
Dec-2014
Author
Sebastian E Carrasco
Bruno B Chomel
Verena A Gill
Angela M Doroff
Melissa A Miller
Kathleen A Burek-Huntington
Rickie W Kasten
Barbara A Byrne
Tracey Goldstein
Jonna A K Mazet
Source
Vector Borne Zoonotic Dis. 2014 Dec;14(12):831-7
Date
Dec-2014
Language
English
Publication Type
Article
Keywords
Alaska - epidemiology
Animals
Antibodies, Bacterial - blood
Bartonella - immunology
Bartonella Infections - blood - epidemiology - veterinary
California - epidemiology
Fluorescent Antibody Technique, Indirect - veterinary
Otters - blood - microbiology
Seroepidemiologic Studies
Abstract
Since 2002, an increased number of northern sea otters (Enhydra lutris kenyoni) from southcentral Alaska have been reported to be dying due to endocarditis and/or septicemia with infection by Streptococcus infantarius subsp. coli. Bartonella spp. DNA was also detected in northern sea otters as part of mortality investigations during this unusual mortality event (UME) in Kachemak Bay, Alaska. To evaluate the extent of exposure to Bartonella spp. in sea otters, sera collected from necropsied and live-captured northern sea otters, as well as necropsied southern sea otters (Enhydra lutris nereis) unaffected by the UME, were analyzed using an immunofluorescent antibody assay. Antibodies against Bartonella spp. were detected in sera from 50% of necropsied and 34% of presumed healthy, live-captured northern sea otters and in 16% of necropsied southern sea otters. The majority of sea otters with reactive sera were seropositive for B. washoensis, with antibody titers ranging from 1:64 to 1:256. Bartonella spp. antibodies were especially common in adult northern sea otters, both free-living (49%) and necropsied (62%). Adult stranded northern sea otters that died from infectious causes, such as opportunistic bacterial infections, were 27 times more likely to be Bartonella seropositive than adult stranded northern sea otters that died from noninfectious causes (p
Notes
Cites: J Clin Microbiol. 2004 Jul;42(7):3346-915243113
Cites: J Wildl Dis. 2011 Apr;47(2):278-9221441180
Cites: J Wildl Dis. 2011 Jul;47(3):579-9221719822
Cites: J Clin Microbiol. 2012 Dec;50(12):4131-323052307
Cites: Vet Microbiol. 2014 Jun 4;170(3-4):325-3424629902
Cites: Clin Microbiol Rev. 2000 Jul;13(3):428-3810885985
Cites: J Clin Microbiol. 2000 Nov;38(11):4193-20011060089
Cites: Clin Diagn Lab Immunol. 2002 Sep;9(5):1004-912204950
Cites: J Wildl Dis. 2003 Jul;39(3):495-50914567210
Cites: J Clin Microbiol. 2003 Nov;41(11):5327-3214605197
Cites: J Vet Intern Med. 2004 Jan-Feb;18(1):56-6414765733
Cites: J Clin Microbiol. 2004 Feb;42(2):652-914766832
Cites: J Clin Microbiol. 1995 Sep;33(9):2445-507494043
Cites: J Clin Microbiol. 1996 Sep;34(9):2270-48862597
Cites: Am J Vet Res. 1997 May;58(5):467-719140552
Cites: Parasitology. 1998 Oct;117 ( Pt 4):393-4039820861
Cites: Emerg Infect Dis. 1999 Sep-Oct;5(5):711-510511529
Cites: Vet Res. 2005 May-Jun;36(3):383-41015845231
Cites: J Am Vet Med Assoc. 2006 Jun 1;228(11):1723-3416740074
Cites: J Clin Microbiol. 2007 Aug;45(8):2411-817553970
Cites: Vet Res. 2009 Mar-Apr;40(2):2919284965
Cites: J Wildl Dis. 2008 Oct;44(4):871-718957643
Cites: Int J Parasitol. 2008 Sep;38(11):1319-2818452923
Cites: Emerg Infect Dis. 2009 Jun;15(6):925-719523293
Cites: Vet Res. 2010 Jan-Feb;41(1):119720009
Cites: Vector Borne Zoonotic Dis. 2009 Dec;9(6):751-319402763
Cites: J Vet Emerg Crit Care (San Antonio). 2010 Feb;20(1):8-3020230432
Cites: J Med Microbiol. 2010 Jun;59(Pt 6):743-520223899
Cites: J Wildl Dis. 2010 Jul;46(3):947-5020688703
Cites: Vet Parasitol. 2010 Sep 20;172(3-4):183-9420615616
PubMed ID
25514118 View in PubMed
Less detail

Does human proximity affect antibody prevalence in marine-foraging river otters (Lontra canadensis)?

https://arctichealth.org/en/permalink/ahliterature78527
Source
J Wildl Dis. 2007 Jan;43(1):116-23
Publication Type
Article
Date
Jan-2007
Author
Gaydos Joseph K
Conrad Patricia A
Gilardi Kirsten V K
Blundell Gail M
Ben-David Merav
Author Affiliation
University of California, Davis, Wildlife Health Center, Orcas Island Office, School of Veterinary Medicine, University of California, Davis, 1016 Deer Harbor Road, Eastsound, Washington 98245, USA. jkgaydos@ucdavis.edu
Source
J Wildl Dis. 2007 Jan;43(1):116-23
Date
Jan-2007
Language
English
Publication Type
Article
Keywords
Animals
Animals, Wild
Antibodies, Bacterial - blood
Antibodies, Protozoan - blood
Antibodies, Viral - blood
Conservation of Natural Resources
Environment
Female
Humans
Leptospira interrogans - immunology
Leptospirosis - epidemiology - veterinary
Male
Otters - microbiology - parasitology - virology
Population Density
Sentinel Surveillance - veterinary
Seroepidemiologic Studies
Toxoplasma - immunology
Toxoplasmosis, Animal - epidemiology
Abstract
The investigation of diseases of free-ranging river otters (Lontra canadensis) is a primary conservation priority for this species; however, very little is known about diseases of river otters that forage in marine environments. To identify and better understand pathogens that could be important to marine-foraging river otters, other wildlife species, domestic animals, and humans and to determine if proximity to human population could be a factor in disease exposure, serum samples from 55 free-ranging marine-foraging river otters were tested for antibodies to selected pathogens. Thirty-five animals were captured in Prince William Sound, Alaska (USA), an area of low human density, and 20 were captured in the San Juan Islands, Washington State (USA), an area characterized by higher human density. Of 40 river otters tested by indirect immunofluorescent antibody test, 17.5% were seropositive (titer > or =320) for Toxoplasma gondii. All positive animals came from Washington. Of 35 river otters tested for antibodies to Leptospira interrogans using the microscopic agglutination test, 10 of 20 (50%) from Washington were seropositive (titer > or =200). None of the 15 tested animals from Alaska were positive. Antibodies to Neospora caninum (n=40), Sarcocystis neurona (n=40), Brucella abortus (n=55), avian influenza (n=40), canine distemper virus (n=55), phocine distemper virus (n=55), dolphin morbillivirus (n=55), porpoise morbillivirus (n=55), and Aleutian disease parvovirus (n=46) were not detected. Identifying exposure to T. gondii and L. interrogans in otters from Washington State but not in otters from Alaska suggests that living proximal to higher human density and its associated agricultural activities, domestic animals, and rodent populations could enhance river otter exposure to these pathogens.
PubMed ID
17347401 View in PubMed
Less detail

Climate Degradation and Extreme Icing Events Constrain Life in Cold-Adapted Mammals.

https://arctichealth.org/en/permalink/ahliterature296102
Source
Sci Rep. 2018 01 18; 8(1):1156
Publication Type
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Date
01-18-2018
Author
J Berger
C Hartway
A Gruzdev
M Johnson
Author Affiliation
Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA. jberger@wcs.org.
Source
Sci Rep. 2018 01 18; 8(1):1156
Date
01-18-2018
Language
English
Publication Type
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Keywords
Animals
Arctic Regions
Body Size
Climate Change - mortality
Cold Climate
Disasters - history
Female
History, 19th Century
History, 21st Century
Male
Otters - physiology
Rain
Ruminants - physiology
Snow
Tsunamis - history
Whales - physiology
Abstract
Despite the growth in knowledge about the effects of a warming Arctic on its cold-adapted species, the mechanisms by which these changes affect animal populations remain poorly understood. Increasing temperatures, declining sea ice and altered wind and precipitation patterns all may affect the fitness and abundance of species through multiple direct and indirect pathways. Here we demonstrate previously unknown effects of rain-on-snow (ROS) events, winter precipitation, and ice tidal surges on the Arctic's largest land mammal. Using novel field data across seven years and three Alaskan and Russian sites, we show arrested skeletal growth in juvenile muskoxen resulting from unusually dry winter conditions and gestational ROS events, with the inhibitory effects on growth from ROS events lasting up to three years post-partum. Further, we describe the simultaneous entombment of 52 muskoxen in ice during a Chukchi Sea winter tsunami (ivuniq in Iñupiat), and link rapid freezing to entrapment of Arctic whales and otters. Our results illustrate how once unusual, but increasingly frequent Arctic weather events affect some cold-adapted mammals, and suggest that an understanding of species responses to a changing Arctic can be enhanced by coalescing groundwork, rare events, and insights from local people.
Notes
Cites: Physiol Plant. 2010 Oct;140(2):128-40 PMID 20497369
Cites: Science. 2009 Sep 11;325(5946):1355-8 PMID 19745143
Cites: Sci Rep. 2015 Mar 02;5:8676 PMID 25728642
Cites: Philos Trans R Soc Lond B Biol Sci. 2014 Apr 14;369(1643):20130196 PMID 24733951
Cites: Nature. 2012 Jul 19;487(7407):358-61 PMID 22763443
Cites: Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17905-9 PMID 22025683
Cites: Science. 2013 Jan 18;339(6117):313-5 PMID 23329044
Cites: Conserv Biol. 2012 Oct;26(5):769-77 PMID 22834930
Cites: Science. 2016 Sep 9;353(6304): PMID 27609898
Cites: Science. 2013 Aug 2;341(6145):519-24 PMID 23908231
Cites: Animal. 2009 May;3(5):657-69 PMID 22444443
Cites: Science. 2016 Jun 10;352(6291):1274-5 PMID 27284180
Cites: Biol Lett. 2016 Nov;12 (11): PMID 27852939
Cites: Trends Ecol Evol. 2001 May 1;16(5):254-260 PMID 11301155
Cites: Ambio. 2006 Nov;35(7):347-58 PMID 17256639
Cites: Semin Fetal Neonatal Med. 2004 Oct;9(5):419-25 PMID 15691778
Cites: Proc Biol Sci. 1998 Feb 22;265(1393):341-50 PMID 9523435
PubMed ID
29348632 View in PubMed
Less detail

Temporal trends (1992-2007) of perfluorinated chemicals in Northern Sea Otters (Enhydra lutris kenyoni) from South-Central Alaska.

https://arctichealth.org/en/permalink/ahliterature91755
Source
Arch Environ Contam Toxicol. 2009 Apr;56(3):607-14
Publication Type
Article
Date
Apr-2009
Author
Hart Kimberly
Gill Verena A
Kannan Kurunthachalam
Author Affiliation
New York State Department of Health, School of Public Health, State University of New York, Wadsworth Center, Albany, NY 12201-0509, USA.
Source
Arch Environ Contam Toxicol. 2009 Apr;56(3):607-14
Date
Apr-2009
Language
English
Publication Type
Article
Keywords
Age Factors
Alkanesulfonic Acids - analysis
Animals
Environmental monitoring
Fluorocarbons - analysis
Liver - chemistry
Male
Otters - metabolism
Sulfonamides - analysis
Time Factors
Abstract
Perfluorinated chemicals (PFCs) have been detected in abiotic and biotic matrices worldwide, including the Arctic Ocean. Considering these chemicals' persistent and bioaccumulative potentials, it was expected that levels of PFCs, like those of many legacy organic pollutants, would respond slowly to the restrictions in production and usage. Temporal trend studies in remote areas, such as the Arctic, can help determine the chronology of contamination and the response of the environment to regulations on PFCs. Prior to this study, temporal trends of PFCs in Alaskan coastal waters had not been examined. In the present study, concentrations of six PFCs were determined in livers of northern sea otters (Enhydra lutris kenyoni) collected from three areas in south-central Alaska (Prince William Sound, n = 36; Resurrection Bay, n = 7; Kachemak Bay, n = 34) from 1992 to 2007. Additionally, previously published profiles and concentrations of PFCs in southern sea otters from California and Asian sea otters from Kamchatka (Russia) were compared to our new data, to determine the geographical differences in PFC profiles among these three regions in the Pacific Ocean. Perfluorooctanesulfonate (PFOS), perfluorooctanesulfonamide (PFOSA), and perfluorononanoate (PFNA) were the predominant PFCs found in the livers of northern sea otters from 1992 to 2007. Other PFCs, such as perfluorooctanoate (PFOA), perfluoroundecanoate (PFUnDA), and perfluorodecanoate (PFDA), were detected less frequently, and at low concentrations. Overall, from 2001 to 2007, a decrease in concentrations of PFOS was found in northern sea otters, suggesting an immediate response to the phase-out in 2000 of perfluorooctanesulfonyl-based compounds by a major producer in the United States. In contrast, concentrations of PFNA in northern sea otters increased by 10-fold from 2004 to 2007. These results indicate that the contribution by PFNA to SigmaPFC concentrations is increasing in northern sea otters. The profiles (i.e., composition of individual PFC to SigmaPFC concentration) of PFCs in northern sea otters from Alaska were similar to those reported for southern sea otters from California, but were considerably different from the profiles reported for Asian sea otters from Russia, suggesting differences in point sources of exposure.
PubMed ID
18839236 View in PubMed
Less detail

Long-term impacts of the Exxon Valdez oil spill on sea otters, assessed through age-dependent mortality patterns.

https://arctichealth.org/en/permalink/ahliterature6763
Source
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6562-7
Publication Type
Article
Date
Jun-6-2000
Author
D H Monson
D F Doak
B E Ballachey
A. Johnson
J L Bodkin
Author Affiliation
United States Geological Survey, Alaska Biological Science Center, 1011 East Tudor Road, Anchorage, AK 99503, USA. daniel_monson@usgs.gov
Source
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6562-7
Date
Jun-6-2000
Language
English
Publication Type
Article
Keywords
Accidents
Age Factors
Alaska
Animals
Environmental pollution
Mortality
Otters - physiology
Petroleum
Population Surveillance
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Time Factors
Abstract
We use age distributions of sea otters (Enhydra lutris) found dead on beaches of western Prince William Sound, Alaska, between 1976 and 1998 in conjunction with time-varying demographic models to test for lingering effects from the 1989 Exxon Valdez oil spill. Our results show that sea otters in this area had decreased survival rates in the years following the spill and that the effects of the spill on annual survival increased rather than dissipated for older animals. Otters born after the 1989 spill were affected less than those alive in March 1989, but do show continuing negative effects through 1998. Population-wide effects of the spill appear to have slowly dissipated through time, due largely to the loss of cohorts alive during the spill. Our results demonstrate that the difficult-to-detect long-term impacts of environmental disasters may still be highly significant and can be rigorously analyzed by using a combination of population data, modeling techniques, and statistical analyses.
PubMed ID
10823920 View in PubMed
Less detail

40 records – page 1 of 4.