Skip header and navigation

Refine By

5 records – page 1 of 1.

Candidate gene association study of BMI-related loci, weight, and adiposity in old age.

https://arctichealth.org/en/permalink/ahliterature118879
Source
J Gerontol A Biol Sci Med Sci. 2013 Jun;68(6):661-6
Publication Type
Article
Date
Jun-2013
Author
Rachel A Murphy
Michael A Nalls
Margaux Keller
Melissa Garcia
Stephen B Kritchevsky
Frances A Tylavsky
Anne B Newman
Gregory J Tranah
Gudny Eiriksdottir
Vilmundur Gudnason
Tamara B Harris
Author Affiliation
Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, Bethesda, MD 20892, USA. Rachel.murphy@nih.gov
Source
J Gerontol A Biol Sci Med Sci. 2013 Jun;68(6):661-6
Date
Jun-2013
Language
English
Publication Type
Article
Keywords
Adiposity - genetics
African Americans - ethnology - genetics
Aged
Aged, 80 and over
Aging
Body mass index
Body Weight
European Continental Ancestry Group - ethnology - genetics
Female
Gene Expression Regulation
Genetic Loci
Genetic Predisposition to Disease
Genetic Testing
Genome, Human
Humans
Male
Obesity - epidemiology - genetics
Overweight - genetics
Phenotype
Polymorphism, Single Nucleotide
Prospective Studies
Sampling Studies
United States - epidemiology
Abstract
Most genome-wide association studies are confined to middle-aged populations. It is unclear whether associations between single nucleotide polymorphisms (SNPs) and obesity persist in old age. We aimed to relate 10 body mass index (BMI)-associated SNPs to weight, BMI, % fat, visceral and subcutaneous adipose tissue in Health ABC and AGES-Reykjavik comprising 4,846 individuals of European Ancestry, and 1,139 African Americans over age 65. SNPs were scaled using effect estimates from candidate SNPs. In Health ABC, a SNP near GNPDA2 was modestly associated with weight and SAT area (p = .008, p = .001). Risk score (sum of scaled SNPs) was associated with weight, BMI, and SAT area (p
Notes
Cites: Nat Genet. 2010 Nov;42(11):949-6020935629
Cites: Lancet. 2010 Oct 23;376(9750):1393-40020971364
Cites: PLoS Genet. 2011;7(2):e100130021347282
Cites: Obesity (Silver Spring). 2011 Nov;19(11):2241-721818152
Cites: PLoS Genet. 2012;8(3):e100249122423221
Cites: PLoS Genet. 2012;8(5):e100269522589738
Cites: Transl Psychiatry. 2012;2:e11922832964
Cites: Eur J Clin Nutr. 2000 Jun;54 Suppl 3:S48-5311041075
Cites: Aging Clin Exp Res. 2003 Aug;15(4):321-714661824
Cites: Am J Clin Nutr. 1997 Jul;66(1):111-59209177
Cites: Behav Genet. 1997 Jul;27(4):325-519519560
Cites: J Gerontol A Biol Sci Med Sci. 2005 Mar;60(3):324-3315860469
Cites: Diabetes. 2006 Feb;55(2):385-916443771
Cites: Nat Genet. 2006 Aug;38(8):904-916862161
Cites: Am J Epidemiol. 2007 May 1;165(9):1076-8717351290
Cites: PLoS One. 2008;3(3):e174618335027
Cites: PLoS Genet. 2007 Jul;3(7):e11517658951
Cites: Diabetes. 2008 Nov;57(11):3145-5118647953
Cites: Nat Genet. 2009 Jan;41(1):18-2419079260
Cites: Hum Mol Genet. 2009 Jul 15;18(14):2700-1019414484
Cites: Hum Mol Genet. 2009 Sep 15;18(18):3496-50119528091
Cites: Circ Cardiovasc Genet. 2009 Feb;2(1):73-8020031568
Cites: Nat Genet. 2010 Nov;42(11):937-4820935630
PubMed ID
23160366 View in PubMed
Less detail

Exploring possible epigenetic mediation of early-life environmental exposures on adiposity and obesity development.

https://arctichealth.org/en/permalink/ahliterature274867
Source
Int J Epidemiol. 2015 Aug;44(4):1191-8
Publication Type
Article
Date
Aug-2015
Author
Rebecca C Richmond
Nicholas J Timpson
Thorkild I A Sørensen
Source
Int J Epidemiol. 2015 Aug;44(4):1191-8
Date
Aug-2015
Language
English
Publication Type
Article
Keywords
Adiposity - genetics
DNA Methylation
Denmark
Environmental Exposure
Epigenesis, Genetic
Humans
Longitudinal Studies
Obesity - epidemiology - genetics
Research Design
Notes
Cites: Stat Med. 2014 Dec 30;33(30):5347-5725042556
Cites: Stat Med. 2015 Jan 15;34(1):162-7825316269
Cites: Int J Obes (Lond). 2015 Jan;39(1):85-9724566855
Cites: Psychoneuroendocrinology. 2015 Feb;52:143-5225437119
Cites: Genome Biol. 2012;13(6):24622747597
Cites: PLoS One. 2014;9(9):e10765325238154
Cites: Obesity (Silver Spring). 2014 Oct;22(10):2252-925044758
Cites: Environ Health Perspect. 2014 Oct;122(10):1147-5324906187
Cites: Trends Mol Med. 2014 Oct;20(10):541-325092140
Cites: Int J Obes (Lond). 2014 Oct;38(10):1305-1124942870
Cites: PLoS One. 2014;9(10):e10918425310824
Cites: Hum Mol Genet. 2015 Apr 15;24(8):2349-5925556184
Cites: Int J Epidemiol. 2015 Aug;44(4):1277-8725541553
Cites: Int J Epidemiol. 2015 Aug;44(4):1288-30425855720
Cites: Int J Epidemiol. 2015 Aug;44(4):1224-3725862628
Cites: Int J Epidemiol. 2015 Aug;44(4):1211-2325944819
Cites: Am J Clin Nutr. 1999 Nov;70(5):811-610539740
Cites: Am J Epidemiol. 2001 Jul 1;154(1):21-911427401
Cites: Science. 2001 Aug 10;293(5532):1089-9311498579
Cites: Annu Rev Nutr. 2010 Aug 21;30:315-3920415585
Cites: PLoS One. 2010;5(7):e1189620689593
Cites: FASEB J. 2010 Sep;24(9):3135-4420385621
Cites: Sci Transl Med. 2010 Sep 15;2(49):49ra6720844285
Cites: PLoS Med. 2010 Oct;7(10):e100035621048988
Cites: BMC Med. 2010;8:8721176133
Cites: Int J Epidemiol. 2011 Feb;40(1):240-5020819785
Cites: Genes Dev. 2002 Jan 1;16(1):6-2111782440
Cites: Int J Epidemiol. 2002 Apr;31(2):285-9311980781
Cites: Int J Pediatr Obes. 2011 Jun;6(2-2):e179-8620883124
Cites: Nat Rev Genet. 2011 Aug;12(8):529-4121747404
Cites: Diabetes. 2012 Feb;61(2):391-40022190649
Cites: Endocrinology. 2012 Mar;153(3):1031-822253432
Cites: Genomics. 2012 Mar;99(3):132-722234326
Cites: Int J Epidemiol. 2012 Feb;41(1):5-922422447
Cites: Int J Epidemiol. 2012 Feb;41(1):161-7622422451
Cites: PLoS One. 2012;7(3):e3182122431966
Cites: Biochim Biophys Acta. 2012 Jul;1819(7):727-3222240386
Cites: Int J Obes (Lond). 2012 Jun;36(6):757-6521912396
Cites: Hum Mol Genet. 2012 Jul 1;21(13):3073-8222492999
Cites: Am J Epidemiol. 2012 Oct 1;176(7):608-1222956513
Cites: Environ Health Perspect. 2012 Oct;120(10):1425-3122851337
Cites: Clin Endocrinol (Oxf). 2013 Jun;78(6):814-2223374091
Cites: Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11439-4423716672
Cites: Nat Rev Genet. 2013 Aug;14(8):585-9423817309
Cites: Epigenetics. 2013 May;8(5):522-3323644594
Cites: BMC Bioinformatics. 2013;14:35324305512
Cites: Environ Mol Mutagen. 2014 Apr;55(3):223-3024243566
Cites: Cell. 2014 Mar 27;157(1):95-10924679529
Cites: PLoS One. 2014;9(5):e9749024828434
Cites: BMC Res Notes. 2014;7:27824886386
Cites: Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1007-1724740201
Cites: Lancet. 2014 Jun 7;383(9933):1990-824630777
Cites: Psychol Methods. 2014 Jun;19(2):300-1524079927
Cites: Diabetes. 2014 Jul;63(7):2528-3724622795
Cites: Int J Obes (Lond). 2007 Apr;31(4):615-2117384662
Cites: Annu Rev Nutr. 2007;27:363-8817465856
Cites: Curr Opin Endocrinol Diabetes Obes. 2007 Feb;14(1):17-2217940414
Cites: Int J Epidemiol. 2007 Dec;36(6):1196-20417591638
Cites: Curr Opin Lipidol. 2008 Apr;19(2):151-718388695
Cites: Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):17046-918955703
Cites: Int J Obes (Lond). 2008 Dec;32 Suppl 7:S62-7119136993
Cites: Nat Rev Genet. 2009 Feb;10(2):134-4019119265
Cites: Proc Nutr Soc. 2009 Feb;68(1):43-5419079823
Cites: Int J Epidemiol. 2009 Apr;38(2):528-3719028777
Cites: Environ Health Perspect. 2015 Feb;123(2):193-925325234
Cites: Hum Mol Genet. 2015 Apr 15;24(8):2201-1725552657
Cites: Nat Genet. 2003 Mar;33 Suppl:245-5412610534
Cites: Int J Obes Relat Metab Disord. 2003 Jun;27(6):722-712833117
Cites: Nutrition. 2004 Jan;20(1):63-814698016
Cites: N Engl J Med. 1976 Aug 12;295(7):349-53934222
Cites: Am J Clin Nutr. 1994 May;59(5):955-98172099
Cites: Am J Clin Nutr. 1999 Feb;69(2):179-979989679
Cites: Am J Physiol Regul Integr Comp Physiol. 2005 Jan;288(1):R34-815178540
Cites: Obes Res. 2005 Dec;13(12):2187-9416421354
Cites: Epidemiology. 2006 May;17(3):292-516570023
Cites: Hum Mol Genet. 2009 Nov 1;18(21):4046-5319656776
Cites: Int J Obes (Lond). 2010 Jan;34(1):67-7419918246
Cites: Am J Hum Genet. 2010 Mar 12;86(3):411-920215007
Cites: PLoS One. 2010;5(6):e1113620614031
Cites: Diabetes. 2011 May;60(5):1528-3421471513
Cites: Genome Res. 2014 Nov;24(11):1725-3325249537
Cites: Nat Commun. 2014;5:559225424739
Cites: Early Hum Dev. 2014 Nov;90(11):769-8025260961
PubMed ID
25953782 View in PubMed
Less detail

Genetic predisposition to adiposity is associated with increased objectively assessed sedentary time in young children.

https://arctichealth.org/en/permalink/ahliterature298503
Source
Int J Obes (Lond). 2018 01; 42(1):111-114
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Date
01-2018
Author
T M Schnurr
A Viitasalo
A-M Eloranta
C T Damsgaard
Y Mahendran
C T Have
J Väistö
M F Hjorth
L B Christensen
S Brage
M Atalay
L-P Lyytikäinen
V Lindi
T Lakka
K F Michaelsen
T O Kilpeläinen
T Hansen
Author Affiliation
Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Source
Int J Obes (Lond). 2018 01; 42(1):111-114
Date
01-2018
Language
English
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Keywords
Adiposity - genetics
Body mass index
Child
Child, Preschool
Cohort Studies
Denmark - epidemiology
Exercise - physiology
Finland - epidemiology
Genetic Predisposition to Disease - epidemiology - genetics
Humans
Obesity - epidemiology - genetics
Sedentary Behavior
Abstract
Increased sedentariness has been linked to the growing prevalence of obesity in children, but some longitudinal studies suggest that sedentariness may be a consequence rather than a cause of increased adiposity. We used Mendelian randomization to examine the causal relations between body mass index (BMI) and objectively assessed sedentary time and physical activity in 3-8 year-old children from one Finnish and two Danish cohorts [NTOTAL=679]. A genetic risk score (GRS) comprised of 15 independent genetic variants associated with childhood BMI was used as the instrumental variable to test causal effects of BMI on sedentary time, total physical activity, and moderate-to-vigorous physical activity (MVPA). In fixed effects meta-analyses, the GRS was associated with 0.05 SD/allele increase in sedentary time (P=0.019), but there was no significant association with total physical activity (beta=0.011 SD/allele, P=0.58) or MVPA (beta=0.001 SD/allele, P=0.96), adjusting for age, sex, monitor wear-time and first three genome-wide principal components. In two-stage least squares regression analyses, each genetically instrumented one unit increase in BMI z-score increased sedentary time by 0.47 SD (P=0.072). Childhood BMI may have a causal influence on sedentary time but not on total physical activity or MVPA in young children. Our results provide important insights into the regulation of movement behaviour in childhood.
PubMed ID
28947836 View in PubMed
Less detail

Maternal adiposity and infancy growth predict later telomere length: a longitudinal cohort study.

https://arctichealth.org/en/permalink/ahliterature288336
Source
Int J Obes (Lond). 2016 07;40(7):1063-9
Publication Type
Article
Date
07-2016
Author
M A Guzzardi
P. Iozzo
M K Salonen
E. Kajantie
J G Eriksson
Source
Int J Obes (Lond). 2016 07;40(7):1063-9
Date
07-2016
Language
English
Publication Type
Article
Keywords
Adiposity - genetics
Age Factors
Aged
Aging
Body mass index
Female
Finland - epidemiology
Humans
Infant
Leukocytes - metabolism
Longitudinal Studies
Male
Obesity - epidemiology - genetics
Real-Time Polymerase Chain Reaction
Risk factors
Telomere - genetics
Telomere Shortening
Time Factors
Weight Gain - genetics
Abstract
Maternal overweight and obesity during pregnancy, and childhood growth patterns are risk factors influencing long-term health outcomes among the offspring. Furthermore, poor health condition has been associated with shorter leukocyte telomere length in adult subjects. We aimed to assess whether maternal adiposity during pregnancy and growth trajectory during infancy predict leukocyte telomere length (LTL) in later life.
We studied a cohort of 1082 subjects belonging to the Helsinki Birth Cohort Study, born between 1934 and 1944. They underwent two clinical visits 10 years apart (2001-2004 and 2011-2013), during which LTL and anthropometrics were assessed. Birth records included birth weight, length, maternal body mass index (BMI) at the end of pregnancy. Serial measurements of height and weight from birth to 11 years were available.
Higher maternal BMI was associated with shorter LTL in elderly women (r=-0.102, P=0.024) but not in men. Also, in women but not in men shorter LTL and greater telomere shortening over a 10-year interval were predicted by higher weight at 12 months of age (P=0.008 and P=0.029, respectively), and higher weight gain during the first 12 months of life (P=0.008 and P=0.006, respectively), particularly between 6 and 9 months of age (P=0.002 for both LTL and LTL shortening rate). A correlation between younger age at adiposity rebound and shorter LTL at 60 years (P=0.022) was also found.
High maternal adiposity during pregnancy is associated with shorter LTL in elderly female offspring, but not in men. Moreover, higher weight and weight gain during the first year of life and younger age at adiposity rebound predict shorter LTL in older age in women, suggesting that rapid growth during the perinatal period accelerates cellular aging in late adulthood.
Notes
Cites: Am J Clin Nutr. 2008 Jun;87(6):1769-7518541567
Cites: Int J Obes (Lond). 2006 Aug;30(8):1281-716505835
Cites: Diabetes Care. 2003 Nov;26(11):3006-1014578231
Cites: PLoS One. 2011;6(5):e1968721602933
Cites: Nature. 1990 May 31;345(6274):458-602342578
Cites: Nucleic Acids Res. 2009 Feb;37(3):e2119129229
Cites: BJOG. 2006 Oct;113(10):1126-3316827826
Cites: Pediatr Res. 2002 Sep;52(3):377-8112193671
Cites: J Pediatr. 2009 Sep;155(3):355-6119446851
Cites: Diabetologia. 2003 Feb;46(2):190-412627317
Cites: Ann Med. 2015;47(6):499-50526339993
Cites: J Nutr. 2009 Feb;139(2):422S-5S19106318
Cites: JAMA. 2009 Jun 3;301(21):2234-4219491185
Cites: Am J Epidemiol. 2009 Jul 1;170(1):72-919439580
Cites: Int J Obes (Lond). 2006 Dec;30 Suppl 4:S11-717133230
Cites: Lancet. 2005 Aug 20-26;366(9486):662-416112303
Cites: N Engl J Med. 2004 Feb 26;350(9):865-7514985484
Cites: J Clin Endocrinol Metab. 2011 May;96(5):1500-521349907
Cites: Diabetes. 2011 Jul;60(7):1849-5521709280
Cites: Pediatrics. 2009 Apr;123(4):1177-8319336378
Cites: Cancer Epidemiol Biomarkers Prev. 2009 Mar;18(3):816-2019273484
Cites: Obesity (Silver Spring). 2009 Nov;17(11):2060-619373221
Cites: Acta Paediatr. 2008 Jul;97(7):952-418430074
Cites: Ann Med. 2014 Sep;46(6):434-824910160
Cites: BMJ. 2001 Apr 21;322(7292):949-5311312225
Cites: Lancet. 2007 Jan 13;369(9556):107-1417223473
Cites: Int J Obes Relat Metab Disord. 2001 May;25(5):735-4011360158
Cites: N Engl J Med. 2005 Oct 27;353(17):1802-916251536
Cites: Aging Cell. 2006 Aug;5(4):325-3016913878
Cites: Exp Gerontol. 2014 Mar;51:15-2724365661
Cites: PLoS One. 2014 Jun 11;9(6):e9913324919187
Cites: Acta Paediatr. 2010 Jun;99(6):896-920178511
Cites: Int J Epidemiol. 2012 Oct;41(5):1400-822984146
Cites: J Clin Endocrinol Metab. 2009 May;94(5):1527-3219240149
Cites: Am J Epidemiol. 2007 Jan 1;165(1):14-2117043079
Cites: Int J Epidemiol. 2015 Oct;44(5):1688-9526385867
Cites: JAMA. 2001 May 16;285(19):2461-711368698
Cites: Lancet. 2003 Mar 29;361(9363):1089-9712672313
Cites: Circulation. 2005 May 3;111(17):2171-715851602
Cites: Nucleic Acids Res. 2002 May 15;30(10):e4712000852
PubMed ID
27102052 View in PubMed
Less detail

Sex-specific effects of weight-affecting gene variants in a life course perspective--The HUNT Study, Norway.

https://arctichealth.org/en/permalink/ahliterature117255
Source
Int J Obes (Lond). 2013 Sep;37(9):1221-9
Publication Type
Article
Date
Sep-2013
Author
K. Kvaløy
B. Kulle
P. Romundstad
T L Holmen
Author Affiliation
Department of Public Health and General Practice, HUNT Research Center, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
Source
Int J Obes (Lond). 2013 Sep;37(9):1221-9
Date
Sep-2013
Language
English
Publication Type
Article
Keywords
Adipose Tissue - growth & development
Adiposity - genetics
Adolescent
Adult
Body mass index
Body Weight - genetics
Brain-Derived Neurotrophic Factor - genetics
Female
Gene Frequency
Genetic Predisposition to Disease
Genotype
Humans
Intracellular Signaling Peptides and Proteins - genetics
Male
Membrane Proteins - genetics
Norway - epidemiology
Obesity - epidemiology - genetics
Phenotype
Polymorphism, Single Nucleotide
Potassium Channels - genetics
Questionnaires
Receptor, Melanocortin, Type 4 - genetics
Receptors, Opioid, delta - genetics
Waist Circumference - genetics
Waist-Hip Ratio
Abstract
The impact of previously identified genetic variants directly or indirectly associated with obesity, were investigated at birth, adolescence and adulthood to provide knowledge concerning timing and mechanisms of obesity susceptibility with focus on sex differences.
Twenty four previously identified obesity- and eating disorder susceptibility loci were tested for association with adiposity traits at birth (ponderal index (PI)), adolescence and young adulthood (body mass index (BMI), waist circumference (WC) and waist-hip ratio (WHR)) in 1782 individuals from the HUNT study. Single-nucleotide polymorphism (SNPs) were evaluated individually and by haplotype sliding-window approach for windows?50?kb (near-MC4R, FTO and near-BDNF). The analyses were performed on the total and sex stratified samples.
The most substantial effect on BMI was observed for the near-MC4R variants at adolescence and adulthood (adjusted P-values in adolescence: 0.002 and 0.003 for rs17782313 and rs571312, respectively). The same variants showed inverse association with PI in males (adjusted P-values: 0.019-0.036). Furthermore, significant effects were observed at adolescence with BMI for the near-KCTD15 variant (rs11084753) (adjusted P=0.038) in the combined sample. The near-INSIG2 (rs7566605) was significantly associated to WHR in males and near-BDNF (rs925946) in the combined sample (adjusted P=0.027 and P=0.033, respectively). The OPRD1 locus was associated to BMI and WC in males both at adolescence and adulthood with highest effect in adults (adjusted P=0.058). Interaction with sex was identified for near-MC4R, OPRD1, COMT, near-BDNF and DRD2.
Most obesity susceptibility variants show stronger effect at adolescence than at birth and adulthood with a clear sex-specific effect at some loci. The near-MC4R locus exhibit inverse effect on weight at birth in boys compared with findings at adolescence and adulthood. Some variants less known for obesity-susceptibility such as OPRD1 were found to be associated to weight with strongest effects in males.
PubMed ID
23318717 View in PubMed
Less detail