Skip header and navigation

1 records – page 1 of 1.

Chromosomal aberrations and sister-chromatid exchanges in Lithuanian populations: effects of occupational and environmental exposures.

https://arctichealth.org/en/permalink/ahliterature33065
Source
Mutat Res. 1999 Sep 30;445(2):225-39
Publication Type
Article
Date
Sep-30-1999
Author
J R Lazutka
R. Lekevicius
V. Dedonyte
L. Maciuleviciute-Gervers
J. Mierauskiene
S. Rudaitiene
G. Slapsyte
Author Affiliation
Department of Botany and Genetics, Vilnius University, Lithuania. juozas.lazutka@gf.vu.lt
Source
Mutat Res. 1999 Sep 30;445(2):225-39
Date
Sep-30-1999
Language
English
Publication Type
Article
Keywords
Accidents, Radiation
Adolescent
Adult
Aged
Air Pollutants, Occupational - adverse effects
Air Pollutants, Radioactive - adverse effects
Child
Chromosome Aberrations
Chromosomes, Human - drug effects - radiation effects
DNA Damage
Environmental monitoring
Female
Humans
Lithuania
Lymphocytes - drug effects - radiation effects
Male
Metals, Heavy - adverse effects
Middle Aged
Nuclear Reactors
Occupational Exposure - adverse effects
Organic Chemicals - adverse effects
Radiation, Ionizing
Research Support, Non-U.S. Gov't
Sister Chromatid Exchange
Ukraine
Abstract
Cytogenetic analysis of chromosomal aberrations (CA) in 175,229 cells from 1113 individuals, both unexposed and occupationally or environmentally exposed to heavy metals (mercury and lead), organic (styrene, formaldehyde, phenol and benzo(a)pyrene) and inorganic (sulfur and nitrogen oxides, hydrogen and ammonium fluorides) volatile substances and/or ionizing radiation was performed. In addition, 11,250 cells from 225 individuals were scored for the frequency of sister-chromatid exchanges (SCE). Increased frequencies of CA were found in all occupationally exposed groups. A principal difference between the exposure to heavy metals and organic substances was found: increase in the CA frequency was dependent on duration of exposure to mercury but not dependent on duration of exposure to styrene, formaldehyde and phenol. A higher CA incidence was found in lymphocytes of children living in the vicinity of a plant manufacturing phosphate fertilizers. This indicates that children are a sensitive study group for the assessment of environmental exposure. However, the results of SCE analysis in these children were inconclusive. Exposure to ionizing radiation was found to cause chromosome breaks and chromatid exchanges in Chernobyl clean-up workers and chromatid breaks, chromatid exchanges, dicentric chromosomes and chromosome translocations in workers from the Ignalina Nuclear Power Plant. The increased frequency of chromatid exchanges in individuals exposed to ionizing radiation was quite unexpected. This may be attributed to the action of some unrecognized life-style or occupational factors, or to be a result of radiation-induced genomic instability. Also an increased SCE frequency was found in lymphocytes of Chernobyl clean-up workers.
PubMed ID
10575432 View in PubMed
Less detail