Skip header and navigation

Refine By

1 records – page 1 of 1.

Stable intrachromosomal biomarkers of past exposure to densely ionizing radiation in several chromosomes of exposed individuals.

https://arctichealth.org/en/permalink/ahliterature178301
Source
Radiat Res. 2004 Sep;162(3):257-63
Publication Type
Article
Date
Sep-2004
Author
Catherine R Mitchell
Tamara V Azizova
M Prakash Hande
Ludmilla E Burak
Josephine M Tsakok
Valentin F Khokhryakov
Charles R Geard
David J Brenner
Author Affiliation
Center for Radiological Research, Columbia University, New York, New York 10032, USA. cm2073@columbia.edu
Source
Radiat Res. 2004 Sep;162(3):257-63
Date
Sep-2004
Language
English
Publication Type
Article
Keywords
Aged
Aged, 80 and over
Body Burden
Chromosome Aberrations - radiation effects - statistics & numerical data
Chromosome Banding - methods
Chromosomes, Human - radiation effects
Dose-Response Relationship, Radiation
Female
Gamma Rays
Genetic Markers - radiation effects
Humans
Leukocytes - metabolism
Male
Middle Aged
Nuclear Reactors
Occupational Exposure - analysis
Plutonium
Radiation Dosage
Radiation, Ionizing
Radiometry - methods
Risk Assessment - methods
Risk factors
Russia - epidemiology
Abstract
A multicolor banding (mBAND) fluorescence in situ hybridization technique was used to investigate the presence inhuman populations of a stable biomarker-intrachromosomal chromosome aberrations-of past exposure to high-LET radiation. Peripheral blood lymphocytes were taken from healthy Russian nuclear workers occupationally exposed from 1949 onward to either plutonium, gamma rays or both. Metaphase spreads were produced and chromosomes 1 and 2 were hybridized with mBAND FISH probes and scored for intra-chromosomal aberrations. A large yield of intrachromosomal aberrations was observed in both chromosomes of the individuals exposed to high doses of plutonium, whereas there was no significant increase over the (low) background control rate in the population who were exposed to high doses of gamma rays. Interchromosome aberration yields were similar in both the high plutonium and the high gamma-ray groups. These results for chromosome 1 and 2 confirm and extend data published previously for chromosome 5. Intrachromosomal aberrations thus represent a potential biomarker for past exposure to high-LET radiations such as alpha particles and neutrons and could possibly be used as a biodosimeter to estimate both the dose and type of radiation exposure in previously exposed populations.
PubMed ID
15378838 View in PubMed
Less detail