A questionnaire study was performed in seven areas located around the airports of Landvetter and Save, Gothenburg, in an attempt to elucidate the extent of annoyance in populations exposed to aircraft noise. Noise exposure was estimated as the energy equivalent level (Aircraft Noise Level--FBN) or as the number of aircraft with levels that exceeded 70 dBA, combined with the maximum noise level. The results were compared with data obtained from the earlier Scandinavian Aircraft Noise Investigation. The results supported the conclusion that the annoyance reaction is better related to the number of aircraft and the maximum noise level than to energy equivalent levels for noise exposure.
When Gardermoen replaced Fornebu as the main airport for Oslo, aircraft noise levels increased in recreational areas near Gardermoen and decreased in areas near Fornebu. Krog and Engdahl [J. Acoust. Soc. Am. 116, 323-333 (2004)] estimate that recreationists' annoyance from aircraft noise in these areas changed more than would be anticipated from the actual noise changes. However, the sizes of their estimated "situation" effects are not credible. One possible reason for the anomalous results is that standard regression assumptions become violated when motivational factors are inserted into the regression model. Standardized regression coefficients (beta values) should also not be utilized for comparisons across equations.
Notes
Comment On: J Acoust Soc Am. 2004 Jul;116(1):323-3315295993
This study evaluated road traffic noise annoyance in Canada in relation to activity interference, subject concerns about noise and self-reported distance to a major road. Random digit dialing was employed to survey a representative sample of 2565 Canadians 15 years of age and older. Respondents highly annoyed by traffic noise were significantly more likely to perceive annoyance to negatively impact health, live closer to a heavily traveled road and report that traffic noise often interfered with daily activities. Sex, age, education level, community size and province had statistically significant associations with traffic noise annoyance. High noise annoyance consistently correlated with frequent interference of activities. Reducing noise at night (10 pm-7 am) was more important than during the rest of the day.
Access to a quiet side in one's dwelling is thought to compensate for higher noise levels at the most exposed façade. It has also been indicated that noise from combined traffic sources causes more noise annoyance than equal average levels from either road traffic or railway noise separately.
2612 persons in Malmö, Sweden, answered to a residential environment survey including questions on outdoor environment, noise sensitivity, noise annoyance, sleep quality and concentration problems. Road traffic and railway noise was modeled using Geographic Information System.
Access to a quiet side, i.e., at least one window facing yard, water or green space, was associated with reduced risk of annoyance OR (95%CI) 0.47 (0.38-0.59), and concentration problems 0.76 (0.61-0.95). Bedroom window facing the same environment was associated to reduced risk of reporting of poor sleep quality 0.78 (0.64-1.00). Railway noise was associated with reduced risk of annoyance below 55 dB(A) but not at higher levels of exposure.
Having a window facing a yard, water or green space was associated to a substantially reduced risk of noise annoyance and concentration problems. If this window was the bedroom window, sleeping problems were less likely.
Few socioacoustic studies have examined the effect of noise on outdoor recreationists. The areas studied have been mountain and wilderness areas that people typically travel for a distance to visit. In this article we examine the reactions to aircraft noise in local recreational areas experiencing either decreased (1930 survey respondents), or increased noise exposure (1001 survey respondents). Field studies were conducted before and after the relocation the main airport of Norway in 1998 in one area near each airport. The relationship between individual noise exposure (LAeq for the aircraft events, percentage of time aircraft were audible, and LAsel) for the aircraft events. The analyses included the "situation" in which data were collected (before or after the relocation), and variables describing the recreational context. A strong effect of the "situation" was found in both cases, but the size of the effect was influenced by the choice of exposure variable in one of the study areas. Other context variables were also influencing annoyance. The effect of the situation (before/after a change in exposure) on the dose-response relationship may be influenced by the initial noise levels, the amount of change, and the time elapsed since the change at the time of the second survey. Further research should investigate the significance of these variables.
The paper gives an algorithm, a procedure for calculation of aircraft noise, and its spread modeling. The performed investigations have provided guidelines that will become the first Russian official guiding document for assessing a risk from aviation noise to human health.
Associations between traffic noise and sleep problems have been detected in experimental studies, but population-level evidence is scarce.
We studied the relationship between the levels of nighttime traffic noise and sleep disturbances and identified vulnerable population groups.
Noise levels of nighttime-outdoor traffic were modeled based on the traffic intensities in the cities of Helsinki and Vantaa, Finland. In these cities, 7,019 public sector employees (81% women) responded to postal surveys on sleep and health. We linked modeled outdoor noise levels to the residences of the employees who responded to the postal survey. We used logistic regression models to estimate associations of noise levels with subjectively assessed duration of sleep and symptoms of insomnia (i.e., difficulties falling asleep, waking up frequently during the night, waking up too early in the morning, nonrestorative sleep). We also used stratified models to investigate the possibility of vulnerable subgroups.
For the total study population, exposure to levels of nighttime-outside (L(night, outside)) traffic noise > 55 dB was associated with any insomnia symptom = 2 nights per week [odds ratio (OR) = 1.32; 95% confidence interval (CI): 1.05, 1.65]. Among participants with higher trait anxiety scores, which we hypothesized were a proxy for noise sensitivity, the ORs for any insomnia symptom at exposures to L(night, outside) traffic noises 50.1-55 dB and > 55 dB versus = 45 dB were 1.34 (95% CI: 1.00, 1.80) and 1.61 (95% CI: 1.07, 2.42), respectively.
Nighttime traffic noise levels > 50 dB L(night, outside) was associated with insomnia symptoms among persons with higher scores for trait anxiety. For the total study population, L(night, outside) > 55 dB was positively associated with any symptoms.
Notes
Cites: Sci Total Environ. 2010 Oct 1;408(21):4935-4220708214
In Sweden, as in many other European countries, traffic noise is an important environmental health issue. At present, almost two million people are exposed to average noise levels exceeding the outdoor national guideline value (55 dB(A)). Despite efforts to reduce the noise burden, noise-related health effects, such as annoyance and sleep disturbances, are increasing. The scientific interest regarding more serious health effects related to the cardiovascular system is growing, and several experimental and epidemiological studies have been performed or are ongoing. Most of the studies on cardiovascular outcomes have been related to noise from road or aircraft traffic. Few studies have included railway noise. The outcomes under study include morning saliva cortisol, treatment for hypertension, self-reported hypertension, and myocardial infarction. The Swedish studies on road traffic noise support the hypothesis of an association between long-term noise exposure and cardiovascular disease. However, the magnitude of effect varies between the studies and has been shown to depend on factors such as sex, number of years at residence, and noise annoyance. Two national studies have been performed on the cardiovascular effects of aircraft noise exposure. The first one, a cross-sectional study assessing self-reported hypertension, has shown a 30% risk increase per 5 dB(A) noise increase. The second one, which to our knowledge is the first longitudinal study assessing the cumulative incidence of hypertension, found a relative risk (RR) of 1.10 (95% CI 1.01 - 1.19) per 5 dB(A) noise increase. No associations have been found between railway noise and cardiovascular diseases. The findings regarding noise-related health effects and their economic consequences should be taken into account in future noise abatement policies and community planning.
The existing methodology for human health risk assessment allows one to appreciably study cause-and-effect relationships between environmental factors and human health. Risk management is a logic continuation of the assessment of human health risk and it is aimed at substantiating the choice of decisions that are best in a specific situation to eliminate or minimize it, to make follow-up monitoring of exposures and a risk, to evaluate the efficiency of health-improving measures and to correct the latter. Risk management involves technical, technological, organizational, social, legal, economic, normative, political, and other decisions made on the conclusions and estimates obtained when characterizing the risk.