Existing Substances Division, Environmental Health Directorate, Health Canada, Environmental Health Centre, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2.
Source
J Toxicol Environ Health B Crit Rev. 2003 Jan-Feb;6(1):55-83
1,3-Butadiene has been assessed as a Priority Substance under the Canadian Environmental Protection Act. The general population in Canada is exposed to 1,3-butadiene primarily through ambient air. Inhaled 1,3-butadiene is carcinogenic in both mice and rats, inducing tumors at multiple sites at all concentrations tested in all identified studies. In addition, 1,3-butadiene is genotoxic in both somatic and germ cells of rodents. It also induces adverse effects in the reproductive organs of female mice at relatively low concentrations. The greater sensitivity in mice than in rats to induction of these effects by 1,3-butadiene is likely related to species differences in metabolism to active epoxide metabolites. Exposure to 1,3-butadiene in the occupational environment has been associated with the induction of leukemia; there is also some limited evidence that 1,3-butadiene is genotoxic in exposed workers. Therefore, in view of the weight of evidence of available epidemiological and toxicological data, 1,3-butadiene is considered highly likely to be carcinogenic, and likely to be genotoxic, in humans. Estimates of the potency of butadiene to induce cancer have been derived on the basis of both epidemiological investigation and bioassays in mice and rats. Potencies to induce ovarian effects have been estimated on the basis of studies in mice. Uncertainties have been delineated, and, while there are clear species differences in metabolism, estimates of potency to induce effects are considered justifiably conservative in view of the likely variability in metabolism across the population related to genetic polymorphism for enzymes for the critical metabolic pathway.
This article summarizes the current status of 1H MRS in detecting and quantifying a boron neutron capture therapy (BNCT) boron carrier, L-p-boronophenylalanine-fructose (BPA-F) in vivo in the Finnish BNCT project. The applicability of 1H MRS to detect BPA-F is evaluated and discussed in a typical situation with a blood containing resection cavity within the gross tumour volume (GTV). 1H MRS is not an ideal method to study BPA concentration in GTV with blood in recent resection cavity. For an optimal identification of BPA signals in the in vivo 1H MR spectrum, both pre- and post-infusion 1H MRS should be performed. The post-infusion spectroscopy studies should be scheduled either prior to or, less optimally, immediately after the BNCT. The pre-BNCT MRS is necessary in order to utilise the MRS results in the actual dose planning.
The 1H NMR spectra of the lipid region of human plasma from healthy adults, neonates, and patients with malignant and nonmalignant tumors have been recorded on a JNM-GX400 FT spectrometer operating at 399.6 MHz for protons. The chemical shifts of methylene and methyl groups of plasma lipids were measured with respect to the higher field component of the methyl proton resonance of the lactate molecule. The results show that there are changes in the chemical shifts of the methylene proton resonances among the plasma from healthy adults, adults with tumors, and neonates. The shifts observed in the case of cancer patients and neonates are in the direction opposite to the shift measured from the plasma of healthy adults. Thus, the observed changes cannot be explained by the activity in the cell proliferation of tissues which is high in the cases of both healthy neonates and patients with malignant tumors, but they most probably reflect the different lipoprotein compositions of neonates, healthy adults, and adults with tumors.
Department of Gynaecologic Oncology, Radiumhemmet, Institute of Oncology and Pathology, Karolinska University Hospital and Institute, Stockholm, Sweden. caroline.lundgren@karolinska.se
The objective of this study was to explore the protein expression pattern in normal endometrial mucosa (n = 5) and endometrial carcinoma (n = 15) of low (diploid) and high (aneuploid) malignancy potential by two-dimensional gel electrophoresis (2-DE). The specimens were evaluated for histopathologic subtype, stage and grade in relation to DNA ploidy. A match-set consisting of five samples from normal endometrium, eight diploid and seven aneuploid tumours was created. All the diploid and three of the aneuploid tumours were of endometrioid subtype, while the remaining four were of uterine seropapillary type. There were 192 protein spots differentiating diploid tumours from normal endometrium and 238 protein spots were separating aneuploid tumours from normal endometrium (p