Skip header and navigation

1 records – page 1 of 1.

Comparative histories of polycyclic aromatic compound accumulation in lake sediments near petroleum operations in western Canada.
Environ Pollut. 2017 Dec; 231(Pt 1):13-21
Publication Type
Comparative Study
Journal Article
Joshua R Thienpont
Cyndy M Desjardins
Linda E Kimpe
Jennifer B Korosi
Steven V Kokelj
Michael J Palmer
Derek C G Muir
Jane L Kirk
John P Smol
Jules M Blais
Author Affiliation
Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
Environ Pollut. 2017 Dec; 231(Pt 1):13-21
Publication Type
Comparative Study
Journal Article
Environmental monitoring
Geologic Sediments - analysis
Lakes - analysis
Oil and Gas Fields
Petroleum - analysis
Polycyclic Aromatic Hydrocarbons - analysis
Water Pollutants, Chemical - analysis
We examined the historical deposition of polycyclic aromatic compounds (PACs) recorded in radiometrically-dated lake sediment cores from a small, conventional oil and gas operation in the southern Northwest Territories (Cameron Hills), and placed these results in the context of previously published work from three other important regions of western Canada: (1) the Athabasca oil sands region in Alberta; (2) Cold Lake, Alberta; and (3) the Mackenzie Delta, NT. Sediment PAC records from the Cameron Hills showed no clear changes in either source or concentrations coincident with the timing of development in these regions. Changes were small in comparison to the clear increases in both parent and alkyl-substituted PACs in response to industrial development from the Athabasca region surface mining of oil sands, where parent PAC diagnostic ratios indicated a shift from pyrogenic sources (primarily wood and coal burning) in pre-development sediments to more petrogenically-sourced PACs in modern sediments. Cores near in-situ oil sand extraction operations showed only modest increases in PAC deposition. This work directly compares the history and trajectory of contamination in lake ecosystems in areas of western Canada impacted by the most common types of hydrocarbon extraction activities, and provides a context for assessing the environmental impacts of oil and gas development in the future.
PubMed ID
28780061 View in PubMed
Less detail