Skip header and navigation

2 records – page 1 of 1.

[Abundance and diversity of methanotrophic Gammaproteobacteria in northern wetlands].

https://arctichealth.org/en/permalink/ahliterature259581
Source
Mikrobiologiia. 2014 Mar-Apr;83(2):204-14
Publication Type
Article
Author
O V Danilova
S N Dedysh
Source
Mikrobiologiia. 2014 Mar-Apr;83(2):204-14
Language
Russian
Publication Type
Article
Keywords
Biodiversity
Fresh Water - microbiology
Gammaproteobacteria - genetics - isolation & purification - metabolism
Hydrogen-Ion Concentration
In Situ Hybridization, Fluorescence
Methane - metabolism
Methylococcaceae - genetics
Methylocystaceae - genetics
Molecular Sequence Data
Oxygenases - genetics
Phylogeny
RNA, Ribosomal, 16S
Russia
Wetlands
Abstract
Numeric abundance, identity and pH preferences of methanotrophic Gammaproteobacteria (type I methanotrophs) inhabiting the northern acidic wetlands were studied. The rates of methane oxidation by peat samples from six-wetlands of European Northern Russia (pH 3.9-4.7) varied from 0.04 to 0.60 µg CH4 g(-1) peat h(-1). The number of cells revealed by hybridization with fluorochrome-labeled probes M84 + M705 specific for type I methanotrophs was 0.05-2.16 x 10(5) cells g(-1) dry peat, i.e. 0.4-12.5% of the total number of methanotrophs and 0.004-0.39% of the total number of bacteria. Analysis of the fragments of the pmoA gene encoding particulate methane monooxygenase revealed predominance of the genus Methylocystis (92% of the clones) in the studied sample of acidic peat, while the proportion of the pmoA sequences of type I methanotrophs was insignificant (8%). PCR amplification of the 16S rRNA gene fragments of type I methanotrophs with TypeIF-Type IR primers had low specificity, since only three sequences out of 53 analyzed belonged to methanotrophs and exhibited 93-99% similarity to those of Methylovulum, Methylomonas, and Methylobacter species. Isolates of type I methanotrophs obtained from peat (strains SH10 and 83A5) were identified as members of the species Methylomonaspaludis and Methylovulum miyakonense, respectively. Only Methylomonaspaludum SH10 was capable of growth in acidic media (pH range for growth 3.8-7.2 with the optimum at pH 5.8-6.2), while Methylovulum miyakonense 83A5 exhibited the typical growth characteristics of neutrophilic methanotrophs (pH range for growth 5.5-8.0 with the optimum at pH 6.5-7.5).
PubMed ID
25423724 View in PubMed
Less detail

Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers.

https://arctichealth.org/en/permalink/ahliterature279265
Source
Appl Environ Microbiol. 2014 Oct;80(19):5944-54
Publication Type
Article
Date
Oct-2014
Author
Igor Y Oshkin
Carl-Eric Wegner
Claudia Lüke
Mikhail V Glagolev
Illiya V Filippov
Nikolay V Pimenov
Werner Liesack
Svetlana N Dedysh
Source
Appl Environ Microbiol. 2014 Oct;80(19):5944-54
Date
Oct-2014
Language
English
Publication Type
Article
Keywords
Bacterial Proteins - genetics
Base Sequence
Cold Temperature
Ecosystem
Gammaproteobacteria - genetics - isolation & purification - physiology
High-Throughput Nucleotide Sequencing
In Situ Hybridization, Fluorescence
Methane - chemistry - metabolism
Methylococcaceae - genetics - isolation & purification - physiology
Molecular Sequence Data
Oxidation-Reduction
Oxygenases - genetics
Phylogeny
Rivers
Sequence Analysis, DNA
Siberia
Abstract
A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The d(13)C value of methane released from these seeps varied between -71.1 and -71.3?, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5?C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.
Notes
Cites: Appl Environ Microbiol. 2009 Dec;75(23):7537-4119801464
Cites: Annu Rev Microbiol. 2009;63:311-3419575572
Cites: Appl Environ Microbiol. 2010 May;76(10):3228-3520348309
Cites: ISME J. 2010 Oct;4(10):1326-3920445635
Cites: Bioinformatics. 2010 Oct 1;26(19):2460-120709691
Cites: Bioinformatics. 2011 Mar 15;27(6):863-421278185
Cites: Appl Environ Microbiol. 2011 Apr;77(8):2573-8121335392
Cites: Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-415608248
Cites: Int J Syst Evol Microbiol. 2011 Apr;61(Pt 4):810-520435749
Cites: Appl Environ Microbiol. 2011 Sep;77(17):6305-921764977
Cites: ISME J. 2012 Jan;6(1):171-8221796219
Cites: Environ Microbiol. 2012 Apr;14(4):895-90822141749
Cites: Environ Microbiol. 2012 Jun;14(6):1403-1922429394
Cites: Int J Syst Evol Microbiol. 2013 Mar;63(Pt 3):1096-10422707532
Cites: Environ Microbiol Rep. 2013 Jun;5(3):335-4523754714
Cites: Environ Microbiol Rep. 2013 Aug;5(4):566-7423864571
Cites: Nat Methods. 2013 Oct;10(10):996-823955772
Cites: Appl Environ Microbiol. 1999 Nov;65(11):5066-7410543824
Cites: FEMS Microbiol Lett. 2001 May 1;198(2):91-711430414
Cites: Appl Environ Microbiol. 2001 Oct;67(10):4850-711571193
Cites: Environ Microbiol. 2002 May;4(5):249-5612030850
Cites: Chemosphere. 2002 Dec;49(8):777-8912430657
Cites: Nucleic Acids Res. 2004;32(4):1363-7114985472
Cites: Appl Environ Microbiol. 2004 May;70(5):3138-4215128578
Cites: FEMS Microbiol Lett. 1995 Oct 15;132(3):203-87590173
Cites: Microbiology. 1997 Apr;143 ( Pt 4):1451-99141708
Cites: Nucleic Acids Res. 1997 Sep 1;25(17):3389-4029254694
Cites: Appl Environ Microbiol. 2005 Nov;71(11):6885-9916269723
Cites: FEMS Microbiol Ecol. 2005 Jun 1;53(1):15-2616329925
Cites: Int J Syst Evol Microbiol. 2006 Jan;56(Pt 1):109-1316403874
Cites: Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2363-716452171
Cites: Environ Microbiol. 2006 Apr;8(4):574-9016584470
Cites: Environ Microbiol. 2007 Jan;9(1):107-1717227416
Cites: Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1073-8017473262
Cites: J Microbiol Methods. 2007 Jun;69(3):451-6017442439
Cites: Appl Environ Microbiol. 2007 Jul;73(13):4389-9417483263
Cites: Appl Environ Microbiol. 2007 Aug;73(16):5261-717586664
Cites: FEMS Microbiol Ecol. 2008 Nov;66(2):367-7818721144
Cites: Microb Ecol. 2009 Jan;57(1):25-3518592300
Cites: Appl Environ Microbiol. 2009 Jan;75(1):119-2618997033
Cites: Nature. 2010 Mar 25;464(7288):543-820336137
PubMed ID
25063667 View in PubMed
Less detail