Skip header and navigation

Refine By

41 records – page 1 of 5.

A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles.

https://arctichealth.org/en/permalink/ahliterature95961
Source
Nature. 2001 May 17;411(6835):287-90
Publication Type
Article
Date
May-17-2001
Author
Retallack G J
Author Affiliation
Department of Geological Sciences, University of Oregon, Eugene 97403-1272, USA. gregr@darkwing.uoregon.edu
Source
Nature. 2001 May 17;411(6835):287-90
Date
May-17-2001
Language
English
Publication Type
Article
Keywords
Atmosphere - chemistry
Carbon Dioxide - metabolism
Cold Climate
Fossils
Ginkgo biloba - cytology - growth & development - metabolism
Greenhouse Effect
Ice
Methane - metabolism
Phylogeny
Plant Leaves - cytology - growth & development - metabolism
Plants, Medicinal
Pollen
Seasons
Water - metabolism
Abstract
To understand better the link between atmospheric CO2 concentrations and climate over geological time, records of past CO2 are reconstructed from geochemical proxies. Although these records have provided us with a broad picture of CO2 variation throughout the Phanerozoic eon (the past 544 Myr), inconsistencies and gaps remain that still need to be resolved. Here I present a continuous 300-Myr record of stomatal abundance from fossil leaves of four genera of plants that are closely related to the present-day Ginkgo tree. Using the known relationship between leaf stomatal abundance and growing season CO2 concentrations, I reconstruct past atmospheric CO2 concentrations. For the past 300 Myr, only two intervals of low CO2 (2,000 p.p.m.v.) concentrations. These results are consistent with some reconstructions of past CO2 (refs 1, 2) and palaeotemperature records, but suggest that CO2 reconstructions based on carbon isotope proxies may be compromised by episodic outbursts of isotopically light methane. These results support the role of water vapour, methane and CO2 in greenhouse climate warming over the past 300 Myr.
Notes
Comment In: Nature. 2001 May 17;411(6835):247-811357108
PubMed ID
11357126 View in PubMed
Less detail

[Abundance and diversity of methanotrophic Gammaproteobacteria in northern wetlands].

https://arctichealth.org/en/permalink/ahliterature259581
Source
Mikrobiologiia. 2014 Mar-Apr;83(2):204-14
Publication Type
Article
Author
O V Danilova
S N Dedysh
Source
Mikrobiologiia. 2014 Mar-Apr;83(2):204-14
Language
Russian
Publication Type
Article
Keywords
Biodiversity
Fresh Water - microbiology
Gammaproteobacteria - genetics - isolation & purification - metabolism
Hydrogen-Ion Concentration
In Situ Hybridization, Fluorescence
Methane - metabolism
Methylococcaceae - genetics
Methylocystaceae - genetics
Molecular Sequence Data
Oxygenases - genetics
Phylogeny
RNA, Ribosomal, 16S
Russia
Wetlands
Abstract
Numeric abundance, identity and pH preferences of methanotrophic Gammaproteobacteria (type I methanotrophs) inhabiting the northern acidic wetlands were studied. The rates of methane oxidation by peat samples from six-wetlands of European Northern Russia (pH 3.9-4.7) varied from 0.04 to 0.60 µg CH4 g(-1) peat h(-1). The number of cells revealed by hybridization with fluorochrome-labeled probes M84 + M705 specific for type I methanotrophs was 0.05-2.16 x 10(5) cells g(-1) dry peat, i.e. 0.4-12.5% of the total number of methanotrophs and 0.004-0.39% of the total number of bacteria. Analysis of the fragments of the pmoA gene encoding particulate methane monooxygenase revealed predominance of the genus Methylocystis (92% of the clones) in the studied sample of acidic peat, while the proportion of the pmoA sequences of type I methanotrophs was insignificant (8%). PCR amplification of the 16S rRNA gene fragments of type I methanotrophs with TypeIF-Type IR primers had low specificity, since only three sequences out of 53 analyzed belonged to methanotrophs and exhibited 93-99% similarity to those of Methylovulum, Methylomonas, and Methylobacter species. Isolates of type I methanotrophs obtained from peat (strains SH10 and 83A5) were identified as members of the species Methylomonaspaludis and Methylovulum miyakonense, respectively. Only Methylomonaspaludum SH10 was capable of growth in acidic media (pH range for growth 3.8-7.2 with the optimum at pH 5.8-6.2), while Methylovulum miyakonense 83A5 exhibited the typical growth characteristics of neutrophilic methanotrophs (pH range for growth 5.5-8.0 with the optimum at pH 6.5-7.5).
PubMed ID
25423724 View in PubMed
Less detail

Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland.

https://arctichealth.org/en/permalink/ahliterature274433
Source
Biomed Res Int. 2015;2015:979530
Publication Type
Article
Date
2015
Author
Malin Bomberg
Mari Nyyssönen
Petteri Pitkänen
Anne Lehtinen
Merja Itävaara
Source
Biomed Res Int. 2015;2015:979530
Date
2015
Language
English
Publication Type
Article
Keywords
Bacteria - genetics - metabolism
Base Sequence
Ecosystem
Finland
Geologic Sediments - microbiology
Groundwater - microbiology
High-Throughput Nucleotide Sequencing
Methane - metabolism
Phylogeny
RNA, Messenger - genetics - metabolism
RNA, Ribosomal, 16S - genetics
Sulfates - metabolism
Abstract
Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland) using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296-798?m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ) at 250-350?m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing e-proteobacteria (Sulfurimonas sp.) dominated in the SMMZ and ?-proteobacteria (Pseudomonas spp.) below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG) were more common at 415-559?m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, a-, ß- and d-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.
Notes
Cites: J Bacteriol. 1998 Jun;180(11):2975-829603890
Cites: Nucleic Acids Res. 1989 Oct 11;17(19):7843-532798131
Cites: J Microbiol Methods. 2006 Aug;66(2):194-20516337704
Cites: Appl Environ Microbiol. 2006 Jul;72(7):5069-7216820507
Cites: Int J Syst Evol Microbiol. 2006 Aug;56(Pt 8):1725-3316901999
Cites: Environ Microbiol. 2007 Jan;9(1):131-4217227418
Cites: Environ Microbiol. 2007 May;9(5):1146-6117472631
Cites: Nucleic Acids Res. 2007;35(21):7188-9617947321
Cites: Environ Microbiol. 2009 Feb;11(2):326-3718793316
Cites: Annu Rev Microbiol. 2009;63:311-3419575572
Cites: Appl Environ Microbiol. 2009 Dec;75(23):7537-4119801464
Cites: FEMS Microbiol Ecol. 2011 Aug;77(2):248-6321477007
Cites: FEMS Microbiol Ecol. 2011 Aug;77(2):295-30921488910
Cites: FEMS Microbiol Ecol. 2011 Nov;78(2):233-4321676010
Cites: FEMS Microbiol Ecol. 2012 Jul;81(1):66-7722188407
Cites: Nature. 2012 Nov 22;491(7425):541-623135396
Cites: Archaea. 2012;2012:59684623326206
Cites: ISME J. 2013 Apr;7(4):839-4923235288
Cites: Nature. 2013 Aug 29;500(7464):567-7023892779
Cites: Appl Environ Microbiol. 1993 Mar;59(3):695-7007683183
Cites: Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1609-137510403
Cites: Microbiol Rev. 1994 Dec;58(4):603-157854248
Cites: Appl Environ Microbiol. 1996 Feb;62(2):668-758593069
Cites: Appl Environ Microbiol. 1998 Mar;64(3):960-99501436
Cites: Science. 2002 Mar 15;295(5562):2067-7011896277
Cites: Mol Biol Evol. 2001 May;18(5):691-911319253
Cites: Geobiology. 2014 Jan;12(1):48-6124279507
Cites: Proc Natl Acad Sci U S A. 2002 May 28;99(11):7663-812032340
Cites: Syst Biol. 2003 Oct;52(5):696-70414530136
Cites: Appl Environ Microbiol. 2004 Feb;70(2):781-914766555
Cites: Nucleic Acids Res. 2004;32(5):1792-715034147
Cites: J Bacteriol. 2005 Mar;187(6):2203-815743970
PubMed ID
26425566 View in PubMed
Less detail

Anaerobic methanotrophic communities thrive in deep submarine permafrost.

https://arctichealth.org/en/permalink/ahliterature296101
Source
Sci Rep. 2018 01 22; 8(1):1291
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Date
01-22-2018
Author
Matthias Winkel
Julia Mitzscherling
Pier P Overduin
Fabian Horn
Maria Winterfeld
Ruud Rijkers
Mikhail N Grigoriev
Christian Knoblauch
Kai Mangelsdorf
Dirk Wagner
Susanne Liebner
Author Affiliation
GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany. mwinkel@gfz-potsdam.de.
Source
Sci Rep. 2018 01 22; 8(1):1291
Date
01-22-2018
Language
English
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Keywords
Anaerobiosis - physiology
Archaea - classification - genetics - isolation & purification - metabolism
Arctic Regions
Biodiversity
Carbon - metabolism
DNA, Archaeal - genetics
Geologic Sediments - microbiology
Methane - metabolism
Nitrogen - metabolism
Oceans and Seas
Oxidation-Reduction
Permafrost - microbiology
Phylogeny
RNA, Ribosomal, 16S - genetics
Russia
Abstract
Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and d13C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2?Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.
Notes
Cites: Environ Microbiol. 2016 Sep;18(9):3073-91 PMID 26971539
Cites: Front Microbiol. 2015 Dec 18;6:1423 PMID 26733968
Cites: Nat Commun. 2015 Jun 30;6:7477 PMID 26123199
Cites: Science. 2016 Feb 12;351(6274):703-7 PMID 26912857
Cites: Sci Rep. 2017 Jul 11;7(1):5099 PMID 28698657
Cites: Nucleic Acids Res. 2004 Feb 25;32(4):1363-71 PMID 14985472
Cites: Environ Microbiol. 2014 Jun;16(6):1612-26 PMID 24286252
Cites: Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):593-8 PMID 22544786
Cites: Geochim Cosmochim Acta. 1993 Aug;57(16):3867-83 PMID 11537734
Cites: Science. 2001 Jul 20;293(5529):484-7 PMID 11463914
Cites: Annu Rev Microbiol. 2009;63:311-34 PMID 19575572
Cites: Nature. 2013 Aug 29;500(7464):567-70 PMID 23892779
Cites: Nature. 2006 Apr 13;440(7086):918-21 PMID 16612380
Cites: Proc Natl Acad Sci U S A. 2016 Oct 24;: PMID 27791118
Cites: ISME J. 2010 Dec;4(12):1591-602 PMID 20535221
Cites: Nature. 2006 Sep 7;443(7107):71-5 PMID 16957728
Cites: Environ Microbiol. 2009 Mar;11(3):657-68 PMID 19278451
Cites: Science. 2010 Mar 5;327(5970):1246-50 PMID 20203047
Cites: Int J Syst Evol Microbiol. 2012 Aug;62(Pt 8):1902-7 PMID 22859731
Cites: Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4069-78 PMID 27357680
Cites: Nature. 2008 Dec 4;456(7222):628-30 PMID 19052625
Cites: Environ Microbiol Rep. 2009 Oct;1(5):370-6 PMID 23765889
Cites: Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 PMID 23193283
Cites: Nature. 2015 Apr 9;520(7546):171-9 PMID 25855454
Cites: Sci Rep. 2017 Jul 19;7(1):5828 PMID 28725016
Cites: Science. 2009 Jul 10;325(5937):184-7 PMID 19589998
Cites: FEMS Microbiol Ecol. 2011 Apr;76(1):26-38 PMID 21244447
Cites: Nat Methods. 2010 May;7(5):335-6 PMID 20383131
Cites: Geobiology. 2013 Jul;11(4):318-39 PMID 23551703
Cites: Science. 2004 Dec 24;306(5705):2216-21 PMID 15618510
Cites: Front Microbiol. 2017 Apr 12;8:619 PMID 28446901
Cites: Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4594-9 PMID 25831506
Cites: FEMS Microbiol Ecol. 2016 Oct;92 (10 ): PMID 27312964
Cites: Sci Rep. 2015 Dec 18;5:18165 PMID 26681584
Cites: Environ Microbiol. 2010 Aug;12(8):2327-40 PMID 21966923
Cites: Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5819-24 PMID 24711402
Cites: Nature. 2006 Oct 19;443(7113):854-8 PMID 17051217
Cites: Appl Environ Microbiol. 2000 Aug;66(8):3230-3 PMID 10919774
Cites: Environ Microbiol. 2016 Apr;18(4):1200-11 PMID 26626228
Cites: Appl Microbiol Biotechnol. 2017 Feb;101(4):1631-1641 PMID 28084539
Cites: Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PMID 19801464
Cites: BMC Microbiol. 2013 Jun 24;13:146 PMID 23800252
Cites: Appl Environ Microbiol. 1996 Feb;62(2):316-22 PMID 8593035
Cites: Nature. 2015 May 14;521(7551):208-12 PMID 25739499
Cites: Geobiology. 2011 Jan;9(1):61-78 PMID 20854329
Cites: Nat Rev Microbiol. 2014 Jun;12 (6):414-25 PMID 24814065
Cites: Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4015-20 PMID 25775520
Cites: Front Microbiol. 2015 May 01;6:365 PMID 25983723
Cites: Environ Microbiol. 2010 Mar;12(3):689-703 PMID 20002141
Cites: Environ Microbiol. 2017 Jun;19(6):2192-2209 PMID 28217877
Cites: ISME J. 2016 Mar;10 (3):678-92 PMID 26394007
Cites: Nature. 2000 Oct 5;407(6804):623-6 PMID 11034209
PubMed ID
29358665 View in PubMed
Less detail

Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments.

https://arctichealth.org/en/permalink/ahliterature294342
Source
Sci Total Environ. 2017 Dec 31; 607-608:23-31
Publication Type
Journal Article
Date
Dec-31-2017
Author
Karla Martinez-Cruz
Mary-Cathrine Leewis
Ian Charold Herriott
Armando Sepulveda-Jauregui
Katey Walter Anthony
Frederic Thalasso
Mary Beth Leigh
Author Affiliation
Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico. Electronic address: karla.martinez@umag.cl.
Source
Sci Total Environ. 2017 Dec 31; 607-608:23-31
Date
Dec-31-2017
Language
English
Publication Type
Journal Article
Keywords
Anaerobiosis
Archaea - metabolism
Arctic Regions
Geologic Sediments - microbiology
Lakes - microbiology
Methane - metabolism
Oxidation-Reduction
Abstract
Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.
PubMed ID
28686892 View in PubMed
Less detail

Atmospheric methane oxidizers are present and active in Canadian high Arctic soils.

https://arctichealth.org/en/permalink/ahliterature257988
Source
FEMS Microbiol Ecol. 2014 Aug;89(2):257-69
Publication Type
Article
Date
Aug-2014
Author
Christine Martineau
Yao Pan
Levente Bodrossy
Etienne Yergeau
Lyle G Whyte
Charles W Greer
Author Affiliation
INRS-Institut Armand-Frappier, Laval, QC, Canada.
Source
FEMS Microbiol Ecol. 2014 Aug;89(2):257-69
Date
Aug-2014
Language
English
Publication Type
Article
Keywords
Air
Arctic Regions
Bacterial Proteins - genetics
Canada
Genes, Bacterial
Genetic Variation
Methane - metabolism
Methylococcaceae - enzymology - genetics
Molecular Sequence Data
Oxidation-Reduction
Oxygenases - genetics
Phylogeny
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
Soil Microbiology
Abstract
The melting of permafrost and the associated potential for methane emissions to the atmosphere are major concerns in the context of global warming. However, soils can also represent a significant sink for methane through the activity of methane-oxidizing bacteria (MOB). In this study, we looked at the activity, diversity, and community structure of MOB at two sampling depths within the active layer in three soils from the Canadian high Arctic. These soils had the capacity to oxidize methane at low (15 ppm) and high (1000 ppm) methane concentrations, but rates differed greatly depending on the sampling date, depth, and site. The pmoA gene sequences related to two genotypes of uncultured MOB involved in atmospheric methane oxidation, the 'upland soil cluster gamma' and the 'upland soil cluster alpha', were detected in soils with near neutral and acidic pH, respectively. Other groups of MOB, including Type I methanotrophs and the 'Cluster 1' genotype, were also detected, indicating a broader diversity of MOB than previously reported for Arctic soils. Overall, the results reported here showed that methane oxidation at both low and high methane concentrations occurs in high Arctic soils and revealed that different groups of atmospheric MOB inhabit these soils.
PubMed ID
24450397 View in PubMed
Less detail

41 records – page 1 of 5.