Skip header and navigation

Refine By

   MORE

4 records – page 1 of 1.

[Antibacterial activity of alpha-, beta-unsaturated ketones of the furanic sequence]

https://arctichealth.org/en/permalink/ahliterature70219
Source
Mikrobiol Zh. 1966;28(4):77-9
Publication Type
Article
Date
1966

Effect of potassium lactate and a potassium lactate-sodium diacetate blend on Listeria monocytogenes growth in modified atmosphere packaged sliced ham.

https://arctichealth.org/en/permalink/ahliterature160564
Source
J Food Prot. 2007 Oct;70(10):2297-305
Publication Type
Article
Date
Oct-2007
Author
L A Mellefont
T. Ross
Author Affiliation
Australian Food Safety Centre of Excellence, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart 7001, Tasmania, Australia. lyndal.mellefont@utas.edu.au
Source
J Food Prot. 2007 Oct;70(10):2297-305
Date
Oct-2007
Language
English
Publication Type
Article
Keywords
Animals
Colony Count, Microbial
Food contamination - analysis
Food Handling - methods
Food Microbiology
Food Packaging - methods
Food Preservation - methods
Food Preservatives - pharmacology
Humans
Lactates - pharmacology
Listeria monocytogenes - drug effects - growth & development
Meat Products - microbiology
Salmonella Food Poisoning - epidemiology - prevention & control
Sodium Acetate - pharmacology
Swine
Temperature
Time Factors
Abstract
Two commercially available organic acid salts, potassium lactate (PURASAL HiPure P) and a potassium lactate-sodium diacetate blend (PURASAL Opti. Form PD 4), were assessed as potential inhibitors of Listeria monocytogenes growth in modified atmosphere packaged (MAP) sliced ham in challenge studies. The influence of the initial inoculation level of L. monocytogenes (10(1) or 10(3) CFU g(-1)) and storage temperature (4 or 8 degrees C) was also examined. The addition of either organic acid salt to MAP sliced ham strongly inhibited the growth of L. monocytogenes during the normal shelf life of the product under ideal refrigeration conditions (4 degrees C) and even under abusive temperature conditions (i.e., 8 degrees C). During the challenge studies and in the absence of either organic acid salt, L. monocytogenes numbers increased by 1000-fold after 20 days at 8 degrees C and 10-fold after 42 days at 4 degrees C. Both organic acid salt treatments were found to be listeriostatic rather than listericidal. The addition of either organic acid salt to the MAP ham also reduced the growth of indigenous microflora, i.e., aerobic microflora and lactic acid bacteria. The influence of these compounds on the risk of listeriosis in relation to product shelf life is discussed.
PubMed ID
17969611 View in PubMed
Less detail

Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables.

https://arctichealth.org/en/permalink/ahliterature159055
Source
Int J Food Microbiol. 2008 Mar 31;123(1-2):151-8
Publication Type
Article
Date
Mar-31-2008
Author
Maribel Abadias
Josep Usall
Márcia Oliveira
Isabel Alegre
Inmaculada Viñas
Author Affiliation
IRTA, Centre UdL-IRTA, XaRTA-Postharvest, 191 Rovira Roure, 25198-Lleida, Catalonia, Spain. isabel.abadias@irta.cat
Source
Int J Food Microbiol. 2008 Mar 31;123(1-2):151-8
Date
Mar-31-2008
Language
English
Publication Type
Article
Keywords
Colony Count, Microbial
Consumer Product Safety
Disinfectants - pharmacology
Dose-Response Relationship, Drug
Escherichia coli O157 - drug effects - growth & development
Food Contamination - analysis - prevention & control
Food Handling - methods
Food Microbiology
Humans
Hydrogen Peroxide - pharmacology
Lettuce - microbiology
Listeria monocytogenes - drug effects - growth & development
Pectobacterium carotovorum - drug effects - growth & development
Salmonella - drug effects - growth & development
Temperature
Time Factors
Vegetables - microbiology
Abstract
Consumption of minimally-processed, or fresh-cut, fruit and vegetables has rapidly increased in recent years, but there have also been several reported outbreaks associated with the consumption of these products. Sodium hypochlorite is currently the most widespread disinfectant used by fresh-cut industries. Neutral electrolyzed water (NEW) is a novel disinfection system that could represent an alternative to sodium hypochlorite. The aim of the study was to determine whether NEW could replace sodium hypochlorite in the fresh-cut produce industry. The effects of NEW, applied in different concentrations, at different treatment temperatures and for different times, in the reduction of the foodborne pathogens Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 and against the spoilage bacterium Erwinia carotovora were tested in lettuce. Lettuce was artificially inoculated by dipping it in a suspension of the studied pathogens at 10(8), 10(7) or 10(5) cfu ml(-1), depending on the assay. The NEW treatment was always compared with washing with deionized water and with a standard hypochlorite treatment. The effect of inoculum size was also studied. Finally, the effect of NEW on the indigenous microbiota of different packaged fresh-cut products was also determined. The bactericidal activity of diluted NEW (containing approximately 50 ppm of free chlorine, pH 8.60) against E. coli O157:H7, Salmonella, L. innocua and E. carotovora on lettuce was similar to that of chlorinated water (120 ppm of free chlorine) with reductions of 1-2 log units. There were generally no significant differences when treating lettuce with NEW for 1 and 3 min. Neither inoculation dose (10(7) or 10(5) cfu ml(-1)) influenced the bacterial reduction achieved. Treating fresh-cut lettuce, carrot, endive, corn salad and 'Four seasons' salad with NEW 1:5 (containing about 50 ppm of free chlorine) was equally effective as applying chlorinated water at 120 ppm. Microbial reduction depended on the vegetable tested: NEW and sodium hypochlorite treatments were more effective on carrot and endive than on iceberg lettuce, 'Four seasons' salad and corn salad. The reductions of indigenous microbiota were smaller than those obtained with the artificially inoculated bacteria tested (0.5-1.2 log reduction). NEW seems to be a promising disinfection method as it would allow to reduce the amount of free chlorine used for the disinfection of fresh-cut produce by the food industry, as the same microbial reduction as sodium hypochlorite is obtained. This would constitute a safer, 'in situ', and easier to handle way of ensuring food safety.
PubMed ID
18237810 View in PubMed
Less detail

Fate of Listeria monocytogenes on fully ripened Greek Graviera cheese stored at 4, 12, or 25 degrees C in air or vacuum packages: in situ PCR detection of a cocktail of bacteriocins potentially contributing to pathogen inhibition.

https://arctichealth.org/en/permalink/ahliterature151703
Source
J Food Prot. 2009 Mar;72(3):531-8
Publication Type
Article
Date
Mar-2009
Author
Eleni Giannou
Athanasia Kakouri
Bojana Bogovic Matijasic
Irena Rogelj
John Samelis
Author Affiliation
National Agricultural Research Foundation, Dairy Research Institute, Katsikas, 45221 Ioannina, Greece.
Source
J Food Prot. 2009 Mar;72(3):531-8
Date
Mar-2009
Language
English
Publication Type
Article
Keywords
Bacteriocins - isolation & purification
Cheese - microbiology
Colony Count, Microbial
Consumer Product Safety
Enterococcus faecium - metabolism
Food Microbiology
Food Packaging - methods
Food Preservation - methods
Humans
Listeria monocytogenes - drug effects - growth & development
Oxygen - metabolism
Polymerase Chain Reaction - methods
Risk assessment
Temperature
Time Factors
Vacuum
Abstract
The behavior of Listeria monocytogenes on fully ripened Greek Graviera cheese was evaluated. Three batches (A, B, and C) were tested. Batches A and C were prepared with a commercial starter culture, while in batch B the starter culture was combined with an enterocin-producing Enterococcus faecium Graviera isolate. Cheese pieces were surface inoculated with a five-strain cocktail of L. monocytogenes at ca. 3 log CFU/cm2, packed under air or vacuum conditions, stored at 4, 12, or 25 degrees C, and analyzed after 0, 3, 7, 15, 30, 60, and 90 days. L. monocytogenes did not grow on the cheese surface, regardless of storage conditions. However, long-term survival of the pathogen was noted in all treatments, being the highest (P
PubMed ID
19343941 View in PubMed
Less detail