Skip header and navigation

Refine By

2 records – page 1 of 1.

Application of molecular genetic methods in diagnostics and epidemiology of food-borne bacterial pathogens.

https://arctichealth.org/en/permalink/ahliterature176690
Source
APMIS. 2004 Nov-Dec;112(11-12):908-29
Publication Type
Article
Author
Susanna Lukinmaa
Ulla-Maija Nakari
Marjut Eklund
Anja Siitonen
Author Affiliation
Laboratory of Enteric Pathogens, National Public Health Institute (KTL), Helsinki, Finland.
Source
APMIS. 2004 Nov-Dec;112(11-12):908-29
Language
English
Publication Type
Article
Keywords
Bacteria - classification - genetics - isolation & purification - pathogenicity
Bacterial Typing Techniques - methods
Campylobacter jejuni - genetics - isolation & purification - pathogenicity
Clostridium perfringens - genetics - isolation & purification - pathogenicity
Databases, Genetic
Electrophoresis, Gel, Pulsed-Field - methods
Enterobacteriaceae - genetics - isolation & purification - pathogenicity
Finland - epidemiology
Food Microbiology
Foodborne Diseases - diagnosis - epidemiology - microbiology
Genotype
Humans
Listeria monocytogenes - genetics - isolation & purification - pathogenicity
Molecular Biology - methods
Molecular Epidemiology - methods
Phenotype
Polymerase Chain Reaction - methods
Salmonella enterica - genetics - isolation & purification - pathogenicity
Yersinia - genetics - isolation & purification - pathogenicity
Abstract
Salmonella enterica, Campylobacter and Yersinia species, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes and Clostridium perfringens are the bacterial pathogens constituting the greatest burden of food-borne disease in Finland. Several molecular genetic methods have been applied to diagnose, discriminate and survey these bacteria. PCR, PCR-RFLP and PFGE are the most widely and successfully used. However, these methods are unable to replace conventional and internationally standardised phenotyping. Electronic database libraries of the different genomic profiles will enable continuous surveillance of infections and detection of possible infection clusters at an early stage. Furthermore, whole-genome sequence data have opened up new insights into epidemiological surveillance. Laboratory-based surveillance performed in a timely manner and exploiting adequate methods, and co-operation at local, national and international levels are among the key elements in preventing food-borne diseases. This paper reviews different applications of molecular genetic methods for investigating enteric bacterial pathogens and gives examples of the methods successfully used in diagnostics and epidemiological studies in Finland.
PubMed ID
15638843 View in PubMed
Less detail

Listeria monocytogenes isolates from invasive infections: variation of sero- and genotypes during an 11-year period in Finland.

https://arctichealth.org/en/permalink/ahliterature185899
Source
J Clin Microbiol. 2003 Apr;41(4):1694-700
Publication Type
Article
Date
Apr-2003
Author
Susanna Lukinmaa
Maria Miettinen
Ulla-Maija Nakari
Hannu Korkeala
Anja Siitonen
Author Affiliation
Laboratory of Enteric Pathogens, National Public Health Institute, FIN-00300 Helsinki, Finland.
Source
J Clin Microbiol. 2003 Apr;41(4):1694-700
Date
Apr-2003
Language
English
Publication Type
Article
Keywords
Adolescent
Adult
Aged
Aged, 80 and over
Bacterial Typing Techniques
Child
Child, Preschool
Electrophoresis, Gel, Pulsed-Field
Female
Finland - epidemiology
Genetic Variation
Genotype
Humans
Infant
Infant, Newborn
Listeria monocytogenes - classification - genetics
Listeriosis - epidemiology - microbiology
Male
Middle Aged
Serotyping
Abstract
Listeria monocytogenes strains that were isolated from 314 human listeriosis cases in Finland during an 11-year period were analyzed by O:H serotyping and pulsed-field gel electrophoresis (PFGE). Serotyping divided the isolates into five serotypes, the most common being 1/2a (53%) and 4b (27%). During the study period, the number of cases caused by serotype 1/2a increased from 22% in 1990 to 67% in 2001, and those caused by serotype 4b decreased from 61 to 27%, respectively. PFGE with restriction enzyme AscI divided the strains into 81 PFGE genotypes; among strains of serotypes 1/2a and 4b, 49 and 18 PFGE types were seen, respectively. PFGE type 1 (serotype 1/2a) was the most prevalent single type (37 strains). Together with six other, closely related PFGE types, PFGE type 1 formed a group of 71 strains, representing 23% of all 314 strains. Strains of PFGE type 1 have also been isolated from cold smoked fish, suggesting a source of human infections caused by this type. Moreover, PFGE type 24 (serotype 1/2c) was significantly associated with gender: 5% of 180 male subjects but none of 132 female subjects (P = 0.012). An electronic database library was created from the PFGE profiles to make possible the prompt detection of new emerging profiles and the tracing of potential infection clusters in the future.
Notes
Cites: J Clin Microbiol. 1994 Dec;32(12):2936-437883880
Cites: Lancet. 1989 Mar 11;1(8637):5492564074
Cites: Clin Infect Dis. 1995 Jan;20(1):66-727727673
Cites: Int J Food Microbiol. 1990 May;10(3-4):255-622118796
Cites: Microbiol Rev. 1991 Sep;55(3):476-5111943998
Cites: JAMA. 1992 Apr 15;267(15):2041-51552639
Cites: Vet Rec. 1993 Aug 14;133(7):165-68236705
Cites: Appl Environ Microbiol. 1994 Jul;60(7):2584-928074531
Cites: J Clin Microbiol. 1995 Sep;33(9):2233-97494007
Cites: Int J Food Microbiol. 1996 Oct;32(3):289-998913801
Cites: Int J Food Microbiol. 1996 Oct;32(3):343-558913805
Cites: Epidemiol Infect. 1996 Dec;117(3):429-368972666
Cites: N Engl J Med. 1997 Jan 9;336(2):100-58988887
Cites: Pediatr Infect Dis J. 1997 Aug;16(8):827-89271054
Cites: J Infect Dis. 1998 Jan;177(1):155-609419182
Cites: Int J Food Microbiol. 1998 Aug 18;43(1-2):61-719761339
Cites: J Microbiol Methods. 1999 Apr;35(3):237-4410333075
Cites: Int J Food Microbiol. 1999 Mar 1;47(1-2):111-910357279
Cites: J Clin Microbiol. 1999 Jul;37(7):2176-8210364582
Cites: J Clin Microbiol. 1999 Jul;37(7):2358-6010364616
Cites: J Infect Dis. 2000 May;181(5):1838-4110823797
Cites: Int J Food Microbiol. 2001 Apr 11;65(1-2):55-6211322701
Cites: Appl Environ Microbiol. 2001 Jun;67(6):2586-9511375167
Cites: Emerg Infect Dis. 2001 May-Jun;7(3):382-911384513
Cites: J Clin Microbiol. 2001 Jul;39(7):2704-711427601
Cites: Emerg Infect Dis. 2001 Nov-Dec;7(6):983-911747725
Cites: Prev Vet Med. 2002 Feb 14;53(1-2):55-6511821137
Cites: Int J Food Microbiol. 2002 Jul 25;77(1-2):83-9012076041
Cites: J Food Prot. 2003 Feb;66(2):249-5512597485
Cites: J Infect Dis. 1978 Jul;138(1):17-2398594
Cites: N Engl J Med. 1983 Jan 27;308(4):203-66401354
Cites: N Engl J Med. 1985 Feb 14;312(7):404-73918263
Cites: JAMA. 1995 Apr 12;273(14):1118-227707600
PubMed ID
12682162 View in PubMed
Less detail