Skip header and navigation

Refine By


4 records – page 1 of 1.

Adipose tissue morphology predicts improved insulin sensitivity following moderate or pronounced weight loss.
Int J Obes (Lond). 2015 Jun;39(6):893-8
Publication Type
D. Eriksson-Hogling
D P Andersson
J. Bäckdahl
J. Hoffstedt
S. Rössner
A. Thorell
E. Arner
P. Arner
M. Rydén
Int J Obes (Lond). 2015 Jun;39(6):893-8
Publication Type
Adipocytes - metabolism - pathology
Adipose Tissue, White - metabolism - pathology
Bariatric Surgery
Blood Glucose - metabolism
Body mass index
Cell Enlargement
Cohort Studies
Diabetes Mellitus, Type 2 - etiology - metabolism - prevention & control
Diet, Reducing
Inflammation - etiology - metabolism
Obesity - complications - metabolism - pathology - surgery
Randomized Controlled Trials as Topic
Weight Loss
Cross-sectional studies show that white adipose tissue hypertrophy (few, large adipocytes), in contrast to hyperplasia (many, small adipocytes), associates with insulin resistance and increased risk of developing type 2 diabetes. We investigated if baseline adipose cellularity could predict improvements in insulin sensitivity following weight loss.
Plasma samples and subcutaneous abdominal adipose biopsies were examined in 100 overweight or obese individuals before and 10 weeks after a hypocaloric diet (7±3% weight loss) and in 61 obese subjects before and 2 years after gastric by-pass surgery (33±9% weight loss). The degree of adipose tissue hypertrophy or hyperplasia (termed the morphology value) in each individual was calculated on the basis of the relationship between fat cell volume and total fat mass. Insulin sensitivity was determined by homeostasis model assessment-estimated insulin resistance (HOMAIR).
In both cohorts at baseline, subjects with hypertrophy displayed significantly higher fasting plasma insulin and HOMAIR values than subjects with hyperplasia (P
PubMed ID
25666530 View in PubMed
Less detail

The epidemiology and pathogenesis of neoplasia in the small intestine.
Ann Epidemiol. 2009 Jan;19(1):58-69
Publication Type
David Schottenfeld
Jennifer L Beebe-Dimmer
Fawn D Vigneau
Author Affiliation
Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA.
Ann Epidemiol. 2009 Jan;19(1):58-69
Publication Type
Adenocarcinoma - epidemiology - etiology
Adenoma - epidemiology - etiology
Colorectal Neoplasms - epidemiology - etiology
Cytokines - physiology
Gastrointestinal Stromal Tumors - epidemiology - etiology
Inflammation - etiology - metabolism
Intestinal Mucosa - metabolism - microbiology - pathology
Intestinal Neoplasms - epidemiology - etiology
Intestine, Small - metabolism - microbiology - pathology
Lymphoma, Non-Hodgkin - epidemiology - etiology
Neuroendocrine Tumors - epidemiology - etiology
Risk factors
United States - epidemiology
The mucosa of the small intestine encompasses about 90% of the luminal surface area of the digestive system, but only 2% of the total annual gastrointestinal cancer incidence in the United States.
The remarkable contrast in age-standardized cancer incidence between the small and large intestine has been reviewed with respect to the cell type patterns, demographic features, and molecular characteristics of neoplasms.
Particularly noteworthy is the predominance of adenocarcinoma in the colon, which exceeds 98% of the total incidence by cell type, in contrast to that of 30% to 40% in the small intestine, resulting in an age-standardized ratio of rates exceeding 50-fold. The prevalence of adenomas and carcinomas is most prominent in the duodenum and proximal jejunum. The positive correlation in global incidence rates of small and large intestinal neoplasms and the reciprocal increases in risk of second primary adenocarcinomas suggest that there are common environmental risk factors. The pathophysiology of Crohn inflammatory bowel disease and the elevated risk of adenocarcinoma demonstrate the significance of the impaired integrity of the mucosal barrier and of aberrant immune responses to luminal indigenous and potentially pathogenic microorganisms.
In advancing a putative mechanism for the contrasting mucosal susceptibilities of the small and large intestine, substantial differences are underscored in the diverse taxonomy, concentration and metabolic activity of anaerobic organisms, rate of intestinal transit, changing pH, and the enterohepatic recycling and metabolism of bile acids. Experimental and epidemiologic studies are cited that suggest that the changing microecology, particularly in the colon, is associated with enhanced metabolic activation of ingested and endogenously formed procarcinogenic substrates.
Cites: Gastroenterol Clin North Am. 2007 Dec;36(4):927-46, viii17996798
Cites: Annu Rev Pathol. 2007;2:401-2918039105
Cites: Cancer Epidemiol Biomarkers Prev. 2007 Dec;16(12):2533-4718086756
Cites: Gastroenterology. 2008 Jan;134(1):306-2318166359
Cites: Lancet Oncol. 2008 Jan;9(1):61-7218177818
Cites: Am J Gastroenterol. 2008 Jan;103(1):190-518184122
Cites: Gastroenterology. 2008 Feb;134(2):388-9518242207
Cites: Gastroenterology. 2008 Feb;134(2):577-9418242222
Cites: Br J Cancer. 2008 Feb 26;98(4):684-818253129
Cites: Gut. 1994 Aug;35(8):1090-77926912
Cites: Br J Surg. 1994 Dec;81(12):1722-337827926
Cites: Scand J Gastroenterol. 1996 Apr;31(4):376-828726307
Cites: Cancer Epidemiol Biomarkers Prev. 1996 Feb;5(2):81-48850266
Cites: Int J Epidemiol. 1996 Aug;25(4):722-88921448
Cites: Int J Cancer. 1997 Mar 4;70(5):512-79052748
Cites: Cancer Res. 1997 Mar 15;57(6):1098-1029067278
Cites: Cancer. 1997 May 1;79(9):1804-89128999
Cites: Gastroenterology. 1997 Jul;113(1):127-359207270
Cites: Ann Intern Med. 1997 Sep 15;127(6):423-89312998
Cites: Nat Genet. 1998 Jan;18(1):38-439425897
Cites: Cancer Epidemiol Biomarkers Prev. 1998 Mar;7(3):243-519521441
Cites: Am J Epidemiol. 1998 May 15;147(10):903-109596467
Cites: Cancer Epidemiol Biomarkers Prev. 1999 Dec;8(12):1101-510613343
Cites: Cancer Causes Control. 2000 Feb;11(2):145-5010710198
Cites: Cancer Epidemiol Biomarkers Prev. 1999 Aug;8(8):715-910744132
Cites: Cancer Lett. 2000 Oct 16;159(1):73-810974408
Cites: J Natl Cancer Inst. 2000 Nov 1;92(21):1740-5211058617
Cites: Cancer Causes Control. 2000 Oct;11(9):791-711075867
Cites: Gastroenterology. 2000 Dec;119(6):1447-5311113065
Cites: Cancer Causes Control. 2001 Jan;12(1):13-2111227921
Cites: Int J Biochem Cell Biol. 2001 Feb;33(2):193-20311240376
Cites: Gut. 2001 Apr;48(4):526-3511247898
Cites: Gut. 2001 Apr;48(4):536-4111247899
Cites: Hum Mol Genet. 2001 Apr;10(7):721-3311257105
Cites: Glycobiology. 2001 Feb;11(2):1R-10R11287395
Cites: Am J Pathol. 2001 May;158(5):1803-811337378
Cites: Surg Oncol. 2003 Aug;12(2):153-7212946486
Cites: Int J Cancer. 2003 Nov 1;107(2):171-612949790
Cites: Am J Clin Nutr. 2003 Oct;78(4):675-8314522724
Cites: Br J Cancer. 1991 Jan;63(1):143-51989654
Cites: Surg Gynecol Obstet. 1991 Nov;173(5):343-91948581
Cites: Gastroenterology. 1992 Jun;102(6):1980-21316858
Cites: Gut. 1992 Sep;33(9):1239-451427378
Cites: Nutr Cancer. 1992;18(2):97-1111437657
Cites: Cancer Causes Control. 1993 Mar;4(2):163-98481495
Cites: Dis Colon Rectum. 1993 Jul;36(7):654-618348849
Cites: Cancer Epidemiol Biomarkers Prev. 1993 Nov-Dec;2(6):551-38268772
Cites: Br J Surg. 1994 Jan;81(1):20-48313111
Cites: Am J Gastroenterol. 1994 May;89(5):699-7018172140
Cites: Cancer Epidemiol Biomarkers Prev. 1994 Apr-May;3(3):205-78019367
Cites: N Engl J Med. 2004 Jan 15;350(3):239-4814724303
Cites: Cancer. 2004 Feb 1;100(3):524-3014745868
Cites: J Nutr. 2004 Feb;134(2):459-6414747689
Cites: Cancer Causes Control. 2004 Feb;15(1):35-4314970733
Cites: Ann N Y Acad Sci. 2004 Apr;1014:1-1215153415
Cites: Ann N Y Acad Sci. 2004 Apr;1014:13-2715153416
Cites: Ann N Y Acad Sci. 2004 Apr;1014:199-20815153435
Cites: Ann N Y Acad Sci. 2004 Apr;1014:218-915153437
Cites: Ann Surg. 2004 Jul;240(1):117-2215213627
Cites: Cancer Res. 1974 Sep;34(9):2368-724843537
Cites: Clin Gastroenterol. 1977 Jan;6(1):3-24330051
Cites: Am J Surg. 1978 Jan;135(1):86-90623378
Cites: Cancer Res. 1981 Apr;41(4):1363-77194137
Cites: Dis Colon Rectum. 1987 Oct;30(10):790-93308369
Cites: Nature. 2001 May 31;411(6837):599-60311385576
Cites: Gastroenterology. 2001 Sep;121(3):542-711522737
Cites: Am J Pathol. 2001 Dec;159(6):2017-2211733352
Cites: Gastroenterology. 2002 Jan;122(1):44-5411781279
Cites: Dis Colon Rectum. 2002 Jan;45(1):91-711786770
Cites: Gastroenterology. 2005 Apr;128(4 Suppl 1):S57-6715825128
Cites: Am J Gastroenterol. 2005 May;100(5):1134-4215842590
Cites: Nat Rev Genet. 2005 May;6(5):376-8815861209
Cites: Cell Mol Life Sci. 2005 Apr;62(7-8):791-915868404
Cites: Gastroenterol Clin North Am. 2005 Sep;34(3):401-12, vii-viii16084304
Cites: Gastroenterol Clin North Am. 2005 Sep;34(3):437-50, viii16084306
Cites: Cancer Causes Control. 2005 Sep;16(7):781-716132788
Cites: Ann N Y Acad Sci. 2006 Aug;1072:321-3117057212
Cites: Cancer Epidemiol Biomarkers Prev. 2006 Nov;15(11):2069-7717119030
Cites: Carcinogenesis. 2007 Jan;28(1):215-2216887864
Cites: N Engl J Med. 2006 Dec 14;355(24):2551-717167138
Cites: World J Gastroenterol. 2007 Jan 7;13(1):146-5117206762
Cites: Annu Rev Med. 2007;58:401-1616987083
Cites: Cancer. 2007 Jun 15;109(12):2420-3117469181
Cites: Nat Rev Cancer. 2007 Aug;7(8):599-61217646865
Cites: Int J Cancer. 2007 Dec 1;121(11):2381-617893868
Cites: Clin Microbiol Rev. 2007 Oct;20(4):593-62117934076
Cites: Gastroenterol Clin North Am. 2007 Sep;36(3):499-513, vii17950435
Cites: Cancer. 1998 Jul 15;83(2):240-49669805
Cites: J Pathol. 1998 Jun;185(2):119-229713336
Cites: Cancer Res. 1998 Dec 1;58(23):5267-709850045
Cites: Am J Clin Nutr. 1999 Mar;69(3):354-6510075317
Cites: Cancer. 1999 Apr 15;85(8):1664-910223558
Cites: Am J Gastroenterol. 1999 May;94(5):1139-5210235185
Cites: Int J Cancer. 1999 Jul 19;82(2):171-410389747
Cites: Am J Gastroenterol. 1999 Aug;94(8):2010-610445521
Cites: Am J Gastroenterol. 1999 Aug;94(8):2128-3410445539
Cites: Fed Proc. 1964 Nov-Dec;23:1386-814236160
Cites: Am J Gastroenterol. 2005 Jan;100(1):162-815654796
Cites: Gastroenterology. 2005 Mar;128(3):590-915765394
Cites: Nat Rev Cancer. 2005 Apr;5(4):251-6215803153
Cites: Gastroenterology. 2005 Apr;128(4 Suppl 1):S47-5115825126
Cites: J Surg Oncol. 2008 Mar 15;97(4):350-918286477
Cites: CA Cancer J Clin. 2008 Mar-Apr;58(2):71-9618287387
Cites: Annu Rev Pathol. 2008;3:557-8618039140
Cites: Int J Cancer. 2008 Aug 15;123(4):867-7318491401
Cites: Gut. 2002 Feb;50(2):218-2311788563
Cites: Oncogene. 2002 Jan 3;21(1):158-6411791187
Cites: Arch Pharm Res. 2001 Dec;24(6):564-711794536
Cites: Lancet. 2002 Jan 5;359(9300):62-911809204
Cites: Am J Hum Genet. 2002 Apr;70(4):845-5711875755
Cites: Cancer Causes Control. 2002 Feb;13(1):27-3411899115
Cites: JAMA. 2002 Mar 20;287(11):1413-911903028
Cites: Nat Rev Immunol. 2002 Jan;2(1):37-4511905836
Cites: Gastroenterology. 2002 Apr;122(4):854-6611910336
Cites: Gut. 2002 May;50(5):647-5211950810
Cites: Hum Pathol. 2002 Mar;33(3):322-911979373
Cites: Am J Gastroenterol. 2002 Jun;97(6):1421-812094860
Cites: Gastroenterology. 2002 Nov;123(5):1428-3512404215
Cites: Lancet Oncol. 2003 Jan;4(1):22-912517536
Cites: Lancet. 2003 Feb 8;361(9356):512-912583961
Cites: Lancet. 2003 Apr 12;361(9365):1290-212699968
Cites: Arch Intern Med. 2003 Jul 14;163(13):1566-7212860579
Cites: Lancet. 2003 Aug 2;362(9381):383-9112907013
Cites: Am J Med. 2003 Aug 15;115(3):191-512935825
Cites: Cancer. 1989 Nov 15;64(10):2178-832804907
Cites: J Natl Cancer Inst. 1990 Apr 18;82(8):650-612157027
Cites: Mutat Res. 1990 May;238(3):313-202188127
Cites: Cancer. 1990 Aug 15;66(4):702-152167140
Cites: Br J Cancer. 2005 Oct 3;93(7):807-1016175183
Cites: Int J Cancer. 2006 Jan 1;118(1):189-9616003748
Cites: Ann Intern Med. 2005 Dec 20;143(12):895-90416365470
Cites: Am J Gastroenterol. 2005 Dec;100(12):2724-916393226
Cites: Annu Rev Med. 2006;57:207-2116409146
Cites: Lancet Oncol. 2006 Feb;7(2):149-5616455479
Cites: Hum Mol Genet. 2006 Mar 15;15(6):1015-2316461335
Cites: CA Cancer J Clin. 2006 Mar-Apr;56(2):69-8316514135
Cites: Clin Microbiol Rev. 2006 Apr;19(2):315-3716614252
Cites: Gastroenterology. 2006 Apr;130(4):1039-4616618397
Cites: Lancet. 2006 Apr 15;367(9518):1271-8416631883
Cites: J Natl Cancer Inst. 2006 Jul 5;98(13):920-3116818856
Cites: J Natl Cancer Inst. 2006 Jul 5;98(13):936-916818858
Cites: Gastroenterol Clin North Am. 2006 Sep;35(3):621-3916952744
Cites: Lab Invest. 2006 Oct;86(10):1052-6316909128
Cites: J Natl Cancer Inst. 2006 Sep 20;98(18):1321-3016985251
Cites: Ann N Y Acad Sci. 2006 Aug;1072:9-1817057186
Cites: Ann N Y Acad Sci. 2006 Aug;1072:135-5417057196
Cites: Ann Intern Med. 1998 Jun 1;128(11):896-99634427
PubMed ID
19064190 View in PubMed
Less detail

Hypothesis: iron chelation plays a vital role in neutrophilic inflammation.
Biometals. 1997 Apr;10(2):135-42
Publication Type
A J Ghio
C A Piantadosi
A L Crumbliss
Author Affiliation
National Health and Environmental Effects Research Laboratory, EPA, Research Triangle Park, NC, USA.
Biometals. 1997 Apr;10(2):135-42
Publication Type
Fibrosis - etiology - metabolism
Free Radicals - adverse effects
Inflammation - etiology - metabolism - pathology
Iron - metabolism
Iron Chelating Agents - pharmacology
Lactoferrin - metabolism
NADH, NADPH Oxidoreductases - metabolism
Neoplasms - etiology - metabolism
Neutrophils - drug effects - enzymology - pathology
Phagocytes - cytology - drug effects - metabolism
Neutrophil influx into tissues occurs in many diverse diseases and can be associated with both beneficial and injurious effects. We hypothesize that the stimulus for certain neutrophilic inflammatory responses can be reduced to a series of competing reactions for iron, with either a labile or reactive coordination site available, between host chelators and chelators not indigenous to that specific living system. The iron focuses the transport of host phagocytic cells through a metal catalyzed generation of oxidant sensitive mediators including cytokines and eicosanoids. Many of these products are chemotactic for neutrophils. We also postulate that the iron increases the activity of the phagocyte associated NADPH oxidoreductase in the neutrophil. The function of this enzyme is likely to be the generation of superoxide in the host's attempt to chemically reduce and dislodge the iron from its chelate complex. After the reoxidation of Fe2+ in an aerobic environment, Fe3+ will be coordinated by host lactoferrin released by the neutrophil. When complexed by this glycoprotein, the metal does not readily undergo oxidation/reduction and is safely transported to the macrophages of the reticuloendothelial system where it is stored in ferritin. Finally, we propose that the neutrophil will attempt to destroy the chelator not indigenous to the host by releasing granular contents other than lactoferrin. Inability to eliminate the chelator allows this sequence to repeat itself, which can lead to tissue injury. Such persistence of a metal chelate in the host may be associated with biomineralization, fibrosis, and cancer.
PubMed ID
9210296 View in PubMed
Less detail

Inflammatory response in the rabbit after phacoemulsification and intraocular lens implantation using a 5.2 or 11.0 mm incision.
J Cataract Refract Surg. 1997 Jan-Feb;23(1):126-31
Publication Type
C G Laurell
C. Zetterström
B. Lundgren
L. Törngren
K. Andersson
Author Affiliation
S:t Erik's Eye Hospital, Stockholm, Sweden.
J Cataract Refract Surg. 1997 Jan-Feb;23(1):126-31
Publication Type
Aqueous Humor - cytology - metabolism
Comparative Study
Dinoprostone - metabolism
Eye Diseases - etiology - metabolism - pathology
Inflammation - etiology - metabolism - pathology
Lenses, Intraocular - adverse effects
Leukocyte Count
Phacoemulsification - adverse effects - methods
Postoperative Complications
Random Allocation
Research Support, Non-U.S. Gov't
PURPOSE: To study the effect of two incision sizes, 5.2 and 11.0 mm, on the inflammatory response in rabbit eyes after lens extraction with phacoemulsification. SETTING: S:t Erik's Eye Hospital, Stockholm, and Pharmacia, Uppsala, Sweden. METHODS: Bilateral endocapsular phacoemulsification was performed on 32 rabbits. The wound was enlarged to 5.2 mm, and a poly(methyl methacrylate) intraocular lens (IOL) was implanted in the capsular bag. In each rabbit, one eye was selected at random and the wound in that eye enlarged to 11.0 mm. In both eyes the wound was sutured with a 9-0 polypropylene continuous suture. The number of white blood cells (WBCs) and prostaglandin E2 (PGE2) in the aqueous humor were measured at days 1, 3, 7, and 28 postoperatively. Corneal thickness was also measured by pachymetry. RESULTS: The number of WBCs at day 3 and the PGE2 levels at days 1, 3, and 7 were significantly higher in eyes with 11.0 mm incisions than in eyes with 5.2 mm incisions. One week after surgery, the corneas in the eyes with 11.0 mm incisions were significantly thicker than in those with 5.2 mm incisions. CONCLUSION: The results indicate that incision size is an important factor in the inflammatory response following phacoemulsification and IOL implantation in the rabbit eye.
PubMed ID
9100120 View in PubMed
Less detail