Existing Substances Division, Environmental Health Directorate, Health Canada, Environmental Health Centre, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2.
Source
J Toxicol Environ Health B Crit Rev. 2003 Jan-Feb;6(1):55-83
1,3-Butadiene has been assessed as a Priority Substance under the Canadian Environmental Protection Act. The general population in Canada is exposed to 1,3-butadiene primarily through ambient air. Inhaled 1,3-butadiene is carcinogenic in both mice and rats, inducing tumors at multiple sites at all concentrations tested in all identified studies. In addition, 1,3-butadiene is genotoxic in both somatic and germ cells of rodents. It also induces adverse effects in the reproductive organs of female mice at relatively low concentrations. The greater sensitivity in mice than in rats to induction of these effects by 1,3-butadiene is likely related to species differences in metabolism to active epoxide metabolites. Exposure to 1,3-butadiene in the occupational environment has been associated with the induction of leukemia; there is also some limited evidence that 1,3-butadiene is genotoxic in exposed workers. Therefore, in view of the weight of evidence of available epidemiological and toxicological data, 1,3-butadiene is considered highly likely to be carcinogenic, and likely to be genotoxic, in humans. Estimates of the potency of butadiene to induce cancer have been derived on the basis of both epidemiological investigation and bioassays in mice and rats. Potencies to induce ovarian effects have been estimated on the basis of studies in mice. Uncertainties have been delineated, and, while there are clear species differences in metabolism, estimates of potency to induce effects are considered justifiably conservative in view of the likely variability in metabolism across the population related to genetic polymorphism for enzymes for the critical metabolic pathway.
An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum.
UFZ-Helmholtz Centre for Environmental Research, Department of System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany. mikhail.beketov@ufz.de
Distinguishing between effects of natural and anthropogenic environmental factors on ecosystems is a fundamental problem in environmental science. In river systems the longitudinal gradient of environmental factors is one of the most relevant sources of dissimilarity between communities that could be confounded with anthropogenic disturbances. To test the hypothesis that in macroinvertebrate communities the distribution of species' sensitivity to organic toxicants is independent of natural longitudinal factors, but depends on contamination with organic toxicants, we analysed the relationship between community sensitivity SPEAR(organic) (average community sensitivity to organic toxicants) and natural and anthropogenic environmental factors in a large-scale river system, from alpine streams to a lowland river. The results show that SPEAR(organic) is largely independent of natural longitudinal factors, but strongly dependent on contamination with organic toxicants (petrochemicals and synthetic surfactants). Usage of SPEAR(organic) as a stressor-specific longitude-independent measure will facilitate detection of community disturbance by organic toxicants.
The authors summarize theoretical principles of increasing human resistence to toxic effects of inorganic compounds polluting occupational environment and habitat, exemplify practical use of this prophylactic trend.
Cytogenetical examination was made in 49 workers of higher chemical hazard enterprises and 26 dwellers from industrial communities, who were engaged in enterprise security. Analysis of chromosome aberrations (CA) in the examined groups revealed a 1.8-fold increase in total CA rates in the industrial community dwellers securing the enterprise as compared to the controls mainly due to the rise in the rate of single fragments. At the same time in the enterprise workers, the total level of CA was 2.36- and 4.1-fold greater than that in the population of industrial communities and in the controls, respectively; and it was also characterized by a broad spectrum of CA with the increased number of both chromatid and chromosomal exchange aberrations.
A group of Canadians pondered the dramatic change in momentum in the United States and began to think more concretely about strategies to bring unions and environmentalists together around a common green economic agenda. The campaign against toxic chemicals has proven to be a natural meeting place for labor and environmental activists. We share a common history and concern about the lack of effective regulation. The more challenging areas are about transition, the need for good jobs, and a viable economic strategy.
1,3-Butadiene was included in the second list of Priority Substances to be assessed under the Canadian Environmental Protection Act. Potential hazards to human health were characterized on the basis of critical examination of available data on health effects in experimental animals and occupationally exposed human populations, as well as information on mode of action. Based on consideration of all relevant data identified as of April 1998, butadiene was considered highly likely to be carcinogenic to humans, and likely to be a somatic and germ cell genotoxicant in humans. In addition, butadiene may also be a reproductive toxicant in humans. Estimates of the potency of butadiene to induce these effects have been derived on the basis of quantitation of observed exposure-response relationships for the purposes of characterization of risk to the general population in Canada exposed to butadiene in the ambient environment.
Heavy metals are chief contaminants of the environment, having an adverse effect on the population, especially on children. Results of hygienic and clinical observations suggest to us that compounds of heavy metals might cause changes in functions of metabolism and structure of some organs and systems raising the level of morbidity. It is necessary that a common system be set up of investigations, based on achievements of hygienic science both in this country and abroad; comprehensive investigations designed to study effects of heavy metals on human health be conducted; methodological approaches to the assessment of complex studies be worked out.
Section of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, SE-405 30 Gothenburg, Sweden. kjell.toren@amm.gu.se
There are epidemiological studies indicating that exposure to metal fumes is a risk factor for infectious pneumonia. Whether occupational exposure to other agents, such as inorganic dust or chemicals, also increases the risk for infectious pneumonia is not clear. The aim of the present study was to elucidate whether occupational exposure to respiratory pollutants and irritants increases the risk for infectious pneumonia.
Prospective cohort study. Setting Swedish male construction workers. Participants 320,143 male construction workers exposed to inorganic dust (asbestos, man-made mineral fibres, dust from cement, concrete and quartz), wood dust, metal fumes and chemicals (organic solvents, diisocyanates and epoxi resins) or unexposed. Main outcome measures The cohort was followed from 1971 to 2003 and the main outcome measures were mortality to infectious pneumonia, lobar pneumonia or pneumococcal pneumonia. RRs were obtained by the person-years method and from Poisson regression models, adjusting for baseline values of age and smoking habits.
Among men aged 20-64 years there was increased mortality from infectious pneumonias among construction workers exposed to metal fumes (RR 2.31, 95% CI 1.35 to 3.95), inorganic dust (RR 1.87, 95% CI 1.22 to 2.87) and chemicals (RR 1.91, 95% CI 1.37 to 3.22). The mortality was also increased from both lobar pneumonia and pneumococcal pneumonia. Among men aged 65-84 years the occupational exposure to inorganic dust and chemicals was associated with slightly increased mortality from infectious pneumonia. Among groups with mutually exclusive exposures there was increased mortality from infectious pneumonias among construction workers exposed to inorganic dust, but not among those exposed to wood dust or chemicals. There were no cases among workers exposed only to metal fumes.
Our findings indicate that exposure to inorganic dust increases the mortality from infectious pneumonias, especially lobar pneumonia and pneumococcal pneumonia. The mechanism is unclear, but the effect may be mediated through induced airways inflammation.
Formaldehyde has been assessed as a Priority Substance under the Canadian Environmental Protection Act. Probabilistic estimates of exposure of the general population in Canada to formaldehyde in ambient and indoor air are presented. Critical health effects include sensory irritation and the potential to induce tumors in the upper respiratory tract (the nasal region in rodents and potentially the lungs of humans). The majority of the general population is exposed to airborne concentrations of formaldehyde less than those typically associated with sensory irritation (i.e., 0.1 mg/m3). Based primarily upon data derived from laboratory studies, the inhalation of formaldehyde under conditions that induce cytotoxicity and sustained regenerative proliferation within the respiratory tract is considered to present a carcinogenic hazard to humans. At airborne levels for which the prevalence of sensory irritation is minimal (i.e., 0.1 mg/m3), risks of respiratory-tract cancers for the general population estimated on the basis of a biologically motivated case-specific model are exceedingly low. This biologically motivated case-specific model incorporates two-stage clonal expansion and is supported by dosimetry calculations from computational fluid dynamics analyses of formaldehyde flux in various regions of the nose and single-path modeling for the lower respiratory tract. The degree of confidence in the underlying database and uncertainties in estimates of exposure and in characterization of hazard and dose response are delineated.