Results of study of relationship between the incidence of allergic diseases in children and the level of atmospheric air pollution in Orenburg are presented. Data of research in 1988-1993 has shown a trend to increase of atmospheric pollution by NO2, H2S, and formaldehyde. Allergic morbidity was 121.38 per 1000 children.
Epidemiologic studies of risk to reproductive health arising from the operating room environment have been inconclusive and lack quantitative exposure information. This study was undertaken to quantify exposure of operating room (OR) personnel to anesthetic agents, x-radiation, methyl methacrylate, and ethylene oxide and to determine how exposure varies with different operating room factors. Exposures of anesthetists and nurses to these agents were determined in selected operating rooms over three consecutive days. Each subject was asked to wear an x-radiation dosimeter for 1 month. Exposure to anesthetic agents was found to be influenced by the age of the OR facility, type of surgical service, number of procedures carried out during the day, type of anesthetic circuitry, and method of anesthesia delivery. Anesthetists were found to have significantly greater exposures than OR nurses. Exposure of OR personnel to ethylene oxide, methyl methacrylate, and x-radiation were well within existing standards. Exposure of anesthetists and nurses to anesthetic agents, at times, was in excess of Ontario exposure guidelines, despite improvements in the control of anesthetic pollution.
The author suggests merger of work condition classes in a classification used by Russian Consumer Protection Board to evaluate work condition by jeopardy and to certify work places in contact with primarily fibrogenic aerosols (P 2.2.2006-05, table 3, p 14)--increasing space of differences between the classes by MAC and dust load.
There are proposed new mathematical models for calculation the TSELs of substances with selective (with a predominant effect on the nervous system, liver and specific irritant action) or polytropic character of influence on the organism body in a single inhalation exposure. For substances with a predominant effect on the nervous system and the simultaneous effect on the kidney, liver and nervous system there was established high correlation between the TSELs and Limac.
This report summarizes the proceedings of a conference on quantitative methods for assessing the risks of developmental toxicants. The conference was planned by a subcommittee of the National Research Council's Committee on Risk Assessment Methodology in conjunction with staff from several federal agencies, including the U.S. Environmental Protection Agency, U.S. Food and Drug Administration, U.S. Consumer Products Safety Commission, and Health and Welfare Canada. Issues discussed at the workshop included computerized techniques for hazard identification, use of human and animal data for defining risks in a clinical setting, relationships between end points in developmental toxicity testing, reference dose calculations for developmental toxicology, analysis of quantitative dose-response data, mechanisms of developmental toxicity, physiologically based pharmacokinetic models, and structure-activity relationships. Although a formal consensus was not sought, many participants favored the evolution of quantitative techniques for developmental toxicology risk assessment, including the replacement of lowest observed adverse effect levels (LOAELs) and no observed adverse effect levels (NOAELs) with the benchmark dose methodology.
Computer analysis of hygienic standards in Russia and the USA and of the toxicometric parameters of chemicals characterized by predominantly irritating effects helped create a prognostic model for the calculation of maximum allowable concentrations of chemicals in the air of working zones.