Skip header and navigation

2 records – page 1 of 1.

Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.
PLoS One. 2014;9(8):e104037
Publication Type
Viola Pavlova
Jacob Nabe-Nielsen
Rune Dietz
Jens-Christian Svenning
Katrin Vorkamp
Frank Farsø Rigét
Christian Sonne
Robert J Letcher
Volker Grimm
PLoS One. 2014;9(8):e104037
Publication Type
Adipose Tissue - metabolism
Basal Metabolism
Climate change
Conservation of Natural Resources
Environmental monitoring
Feeding Behavior
Models, Theoretical
Polychlorinated Biphenyls - analysis - chemistry - metabolism
Ursidae - metabolism - physiology
Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.
Cites: Glob Chang Biol. 2013 Aug;19(8):2360-7223640921
Cites: Environ Int. 2013 Sep;59:485-9323078749
Cites: PLoS One. 2013;8(9):e7286324019883
Cites: Environ Sci Technol. 2001 Feb 15;35(4):732-811349285
Cites: J Environ Monit. 2001 Oct;3(5):493-811695117
Cites: Toxicol Sci. 2002 Apr;66(2):185-20011896285
Cites: Sci Total Environ. 2004 Sep 20;331(1-3):107-2415325144
Cites: Acta Physiol Scand. 1982 Aug;115(4):391-57180534
Cites: Can J Zool. 1975 Aug;53(8):1021-71167176
Cites: Comp Biochem Physiol A Comp Physiol. 1991;98(2):191-31673885
Cites: Biol Rev Camb Philos Soc. 1993 Feb;68(1):1-798457634
Cites: Toxicol Appl Pharmacol. 1993 Nov;123(1):68-728236263
Cites: Toxicol Appl Pharmacol. 1998 Sep;152(1):128-379772208
Cites: J Environ Monit. 2006 Oct;8(10):1000-517240905
Cites: J Environ Monit. 2008 Aug;10(8):935-4018688462
Cites: Sci Total Environ. 2008 Nov 15;406(1-2):352-6718775556
Cites: Environ Sci Technol. 2009 Jun 15;43(12):4334-919603643
Cites: Environ Int. 2009 Nov;35(8):1118-2419683343
Cites: PLoS One. 2012;7(7):e4142922829949
Cites: Environ Sci Technol. 2011 Feb 15;45(4):1243-921247098
Cites: Chemosphere. 2009 Dec;77(11):1558-6819863991
Cites: Environ Toxicol Chem. 2009 Oct;28(10):2206-1519480534
Cites: J Anim Ecol. 2010 Jan;79(1):117-2719754681
Cites: Environ Int. 2011 Feb;37(2):365-7421131049
Cites: Nat Commun. 2011;2:18621304515
Cites: Chemosphere. 2012 Jul;88(4):395-40222464860
PubMed ID
25101837 View in PubMed
Less detail