Skip header and navigation

1 records – page 1 of 1.

Past exposure to densely ionizing radiation leaves a unique permanent signature in the genome.
Am J Hum Genet. 2003 May;72(5):1162-70
Publication Type
M Prakash Hande
Tamara V Azizova
Charles R Geard
Ludmilla E Burak
Catherine R Mitchell
Valentin F Khokhryakov
Evgeny K Vasilenko
David J Brenner
Author Affiliation
Center for Radiological Research, Columbia University, New York, NY 10032, USA.
Am J Hum Genet. 2003 May;72(5):1162-70
Publication Type
Alpha Particles - adverse effects
Bone Marrow - radiation effects
Chromosome Aberrations
Chromosome Breakage
Chromosome Inversion
Chromosome Painting
Chromosomes, Human - radiation effects - ultrastructure
Chromosomes, Human, Pair 5 - radiation effects - ultrastructure
Gamma Rays - adverse effects
Genome, Human
In Situ Hybridization, Fluorescence
Inhalation Exposure - adverse effects
Lymphocytes - pathology - radiation effects
Nuclear Reactors
Occupational Exposure - adverse effects
Plutonium - adverse effects
Radiation Dosage
Radiation, Ionizing
Reference Values
Translocation, Genetic
Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage.
Cites: Health Phys. 2000 Jan;78(1):15-2010608305
Cites: Cytogenet Cell Genet. 1999;84(3-4):156-6010393418
Cites: Radiat Res. 2000 Jul;154(1):3-1110856959
Cites: Mutat Res. 2000 Jul 20;452(1):73-8110894893
Cites: Radiat Res. 2000 Sep;154(3):237-4510956428
Cites: Radiat Res. 2000 Sep;154(3):246-5210956429
Cites: Genes Chromosomes Cancer. 2001 Jan;30(1):105-911107184
Cites: Nat Rev Genet. 2001 Apr;2(4):292-30111283701
Cites: Int J Radiat Biol. 2001 Aug;77(8):901-811571024
Cites: Radiat Res. 2001 Nov;156(5 Pt 2):572-611604074
Cites: Radiat Prot Dosimetry. 2001;97(1):55-6011763358
Cites: Health Phys. 2002 Apr;82(4):425-3111906131
Cites: Health Phys. 2002 Apr;82(4):432-4411906132
Cites: Health Phys. 2002 Apr;82(4):445-5411906133
Cites: Radiat Environ Biophys. 2002 Mar;41(1):19-2212014402
Cites: Radiat Environ Biophys. 2002 Mar;41(1):23-812014403
Cites: Mutat Res. 2002 Jul 25;504(1-2):47-5512106645
Cites: Radiat Environ Biophys. 2002 Jun;41(2):125-3012201055
Cites: Oncogene. 2002 Oct 21;21(48):7365-7512379879
Cites: Curr Top Radiat Res Q. 1973 Oct;9(1):72-94587513
Cites: Int J Radiat Biol. 1993 Aug;64(2):185-78103542
Cites: Mutat Res. 1994 Oct-Dec;313(2-3):193-2027523904
Cites: Radiat Res. 1994 Oct;140(1):134-427938447
Cites: Mutat Res. 1995 Sep;331(1):47-547666868
Cites: Radiat Res. 1995 Dec;144(3):329-417494877
Cites: Nat Genet. 1996 Apr;12(4):368-758630489
Cites: Radiat Res. 1997 Oct;148(4):330-409339949
Cites: Int J Radiat Biol. 1998 Jul;74(1):17-259687971
Cites: Radiat Environ Biophys. 1998 Jul;37(2):75-809728738
Cites: Mutat Res. 1998 Aug 3;404(1-2):139-479729341
Cites: Health Phys. 2000 Jul;79(1):72-610855780
PubMed ID
12679897 View in PubMed
Less detail