Skip header and navigation

Refine By

193 records – page 1 of 20.

(7)Be, (210)Pb, and (210)Po in the surface air from the Arctic to Antarctica.

https://arctichealth.org/en/permalink/ahliterature264944
Source
J Environ Radioact. 2014 Dec;138:364-74
Publication Type
Article
Date
Dec-2014
Author
Bertil R R Persson
Elis Holm
Source
J Environ Radioact. 2014 Dec;138:364-74
Date
Dec-2014
Language
English
Publication Type
Article
Keywords
Air Pollutants, Radioactive - analysis
Antarctic Regions
Arctic Regions
Beryllium - analysis
Lead Radioisotopes - analysis
Polonium - analysis
Radiation monitoring
Radioisotopes - analysis
Siberia
Abstract
In the present study we have investigated the activity concentrations of (210)Pb, (210)Po as well as (7)Be in surface air of the North and South Atlantic (1988-1989), the Arctic Ocean (1991), and along the coastline of Siberia (1994) during succeeding expeditions in the Swedish Polar Research program. During the cruises in the Arctic Ocean during 1991-07-28 to 1991-10-04 the average air concentrations of (7)Be was 0.6 ± 0.4 mBq/m(3), (210)Pb 40 ± 4 µBq/m(3) and (210)Po-38 ± 10 µBq/m(3). During the Swedish-Russian Tundra Ecology-94 expedition along the Siberian coastline the average air concentrations of (7)Be and (210)Pb measured during May-July were 11 ± 3, and 2.4 ± 0.4 mBq/m(3), and during July-September they were 7.2 ± 2 and 2.7 ± 1.1 mBq/m(3) respectively. The results from measurements of the activity concentration of (210)Pb in the air over the Arctic Ocean vary between 75 and 176 µBq/m(3). In the air close to land masses, however, the activity concentration of (210)Pb in the air increases to 269-2712 µBq/m(3). The activity concentration of (7)Be in the South Atlantic during the cruise down to Antarctica varied between 1.3 and 1.7 with an average of 1.5 ± 0.8 mBq/m(3). The activity concentration of (210)Pb in the South Atlantic down to Antarctica varied between 6 and 14 µBq/m(3). At the Equator the activity concentration recorded in November 1988 was 630 µBq/m(3) and in April 1989 it was 260 µBq/m(3). The average activity concentration of (210)Pb during the route Gothenburg-Montevideo in 1988 was 290 and on the return Montevideo-Gothenburg it was 230 µBq/m(3). The activity concentration of (210)Po in the South Atlantic down to Antarctica varied between 15 and 58 µBq/m(3). At the Equator the activity concentration in November 1988 was 170 and in April 1989 it was 70 µBq/m(3). The average activity concentration of (210)Po during the route Gothenburg-Montevideo in 1988 was 63 and on the return Montevideo-Gothenburg it was 60 µBq/m(3). The average of the activity concentrations in the Antarctic air of (210)Pb was 27 ± 10 µBq/m(3) and of (210)Po it was 12 ± 7 µBq/m(3). All our results were compiled together with other published data, and the global latitudinal distribution of (210)Pb was converted to total annual deposition (Bq/m(2)/a) and fitted to a 4th degree polynomial. By using the global latitudinal distribution of (210)Po/(210)Pb-activity ratio from our own results the global latitudinal distribution of (210)Po annual deposition was derived.
PubMed ID
24525181 View in PubMed
Less detail

[Acclimatization of man in the Polar regions].

https://arctichealth.org/en/permalink/ahliterature248107
Source
Voen Med Zh. 1978 Nov;(11):92-3
Publication Type
Article
Date
Nov-1978
Author
N I Bobrov
V P Tikhomirov
O P Lomov
Source
Voen Med Zh. 1978 Nov;(11):92-3
Date
Nov-1978
Language
Russian
Publication Type
Article
Keywords
Acclimatization
Antarctic Regions
Arctic Regions
Cold Climate
Humans
Siberia
PubMed ID
734949 View in PubMed
Less detail

[A concept of promoting health in the population of the circumpolar regions]

https://arctichealth.org/en/permalink/ahliterature4359
Source
Vestn Ross Akad Med Nauk. 1993 Sep-Oct;(8):32-5
Publication Type
Article
Author
V I Khasnulin
Source
Vestn Ross Akad Med Nauk. 1993 Sep-Oct;(8):32-5
Language
Russian
Publication Type
Article
Keywords
Adaptation, Physiological
Antarctic Regions
Arctic Regions
Cold Climate
Ecology
English Abstract
Environmental health
Health promotion
Health status
Humans
Siberia
Abstract
The preservation of human health in polar and circumpolar regions depends mainly on the strategy for future development of these regions. The consequences of human intervention into northern ecology are irreversible, as in the case of greenhouse effect, industrial and atomic pollutions of polar nature, tundra devastation, destruction of northern flora and fauna, etc. The ongoing creation of large-scale industrial population centers in the North due to newcomers is to be stopped. Polar regions are to be used for biospheric reservation and tourist sanitary zones, to preserve specific flora and fauna, to provide the rhythms and customs necessary to survive in extreme climatic and geophysical conditions of high latitudes. The programme for securing man's survival in circumpolar regions should comprise several stages of practical measures to provide necessary resources and to combine international efforts. The preservation of human health should be based on the understanding of the relationship between the health status and biospheric processes and the assessment of the role of human intervention into polar ecology. A programme facilitating the preservation of human health and survival in the North and in the Antarctic should be launched.
PubMed ID
7507378 View in PubMed
Less detail

The adaptation of polar fishes to climatic changes: Structure, function and phylogeny of haemoglobin.

https://arctichealth.org/en/permalink/ahliterature86911
Source
IUBMB Life. 2008 Jan;60(1):29-40
Publication Type
Article
Date
Jan-2008
Author
Verde Cinzia
Giordano Daniela
di Prisco Guido
Author Affiliation
Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, Naples, Italy.
Source
IUBMB Life. 2008 Jan;60(1):29-40
Date
Jan-2008
Language
English
Publication Type
Article
Keywords
Adaptation, Physiological
Animals
Antarctic Regions
Antifreeze Proteins - genetics
Arctic Regions
Cold Climate
Evolution, Molecular
Fishes - physiology
Hemoglobins - chemistry - genetics - physiology
Oxygen - blood
Phylogeny
Abstract
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.
PubMed ID
18379990 View in PubMed
Less detail

Alfred Wegener Institute for Polar and Marine Research

https://arctichealth.org/en/permalink/ahliterature288398
Publication Type
Website
  1 website  
Author Affiliation
Alfred-Wegener-Institut
Language
English
German
Geographic Location
Multi-National
Publication Type
Website
Digital File Format
Web site (.html, .htm)
Keywords
One Health
Changing Ecosystem
Marine biodiversity & Sustainability
Ice
Oceans and Seas
Arctic Regions
Antarctic Regions
Abstract
The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and makes available to national and international science important infrastructure, e.g. the research ice breaker "Polarstern" and research stations in the Arctic and Antarctic.
Online Resources
Less detail

Anders Sparrman and his translation of Rosén von Rosenstein's textbook on children's diseases during Captain Cook's expedition to the antarctic regions and round the world (1772-1775).

https://arctichealth.org/en/permalink/ahliterature41982
Source
Acta Paediatr Scand. 1977 May;66(3):269-72
Publication Type
Article
Date
May-1977

An Optical Dye Method for Continuous Determination of Acidity in Ice Cores.

https://arctichealth.org/en/permalink/ahliterature283239
Source
Environ Sci Technol. 2016 Oct 04;50(19):10485-10493
Publication Type
Article
Date
Oct-04-2016
Author
Helle Astrid Kjær
Paul Vallelonga
Anders Svensson
Magnus Elleskov L Kristensen
Catalin Tibuleac
Mai Winstrup
Sepp Kipfstuhl
Source
Environ Sci Technol. 2016 Oct 04;50(19):10485-10493
Date
Oct-04-2016
Language
English
Publication Type
Article
Keywords
Antarctic Regions
Chromatography
Greenland
Hydrogen-Ion Concentration
Ice
Volcanic Eruptions
Abstract
The pH of polar ice is important for the stability and mobility of impurities in ice cores and can be strongly influenced by volcanic eruptions or anthropogenic emissions. We present a simple optical method for continuous determination of acidity in ice cores based on spectroscopically determined color changes of two common pH-indicator dyes, bromophenol blue, and chlorophenol red. The sealed-system method described here is not equilibrated with CO2, making it simpler than existing methods for pH determination in ice cores and offering a 10-90% peak response time of 45 s and a combined uncertainty of 9%. The method is applied to Holocene ice core sections from Greenland and Antarctica and compared to standard techniques such as electrical conductivity measurement (ECM) conducted on the solid ice, and electrolytic meltwater conductivity, EMWC. Acidity measured in the Greenland NGRIP ice core shows good agreement with acidity calculated from ion chromatography. Conductivity and dye-based acidity Hdye(+) are found to be highly correlated in the Greenland NEGIS firn core (75.38? N, 35.56? W), with all signals greater than 3s variability coinciding with either volcanic eruptions or possible wild fire activity. In contrast, the Antarctic Roosevelt Island ice core (79.36? S, 161.71? W) features an anticorrelation between conductivity and Hdye(+), likely due to strong influence of marine salts.
PubMed ID
27580680 View in PubMed
Less detail
Source
Med J Aust. 1975 Aug 23;2(8):295-8
Publication Type
Article
Date
Aug-23-1975
Author
D J Lugg
Source
Med J Aust. 1975 Aug 23;2(8):295-8
Date
Aug-23-1975
Language
English
Publication Type
Article
Keywords
Anesthesia, Inhalation - history
Antarctic Regions
Appendicitis - history
Carbon Monoxide Poisoning - history
Cold Climate
Equipment and Supplies
Expeditions - history
Frostbite - history - surgery
History, 18th Century
History, 19th Century
History, 20th Century
Humans
Male
Mental Disorders - history
Physicians - supply & distribution
Scurvy - history - prevention & control
Toes - surgery
Transportation of Patients
Abstract
An historical review is made of Antarctic medical practice, which is unique because of the absence of an indigenous population. This review begins with the primitive shipboard practice of doctors accompanying Captain James Cook around 1775 and concludes with the modern era of permanent stations and vast scientific endeavour. The heroic era of Scott, Shackleton, Amundsen and Mawson and the highly mechanized transition period are contrasted with the present day. Medical practice on modern expeditions has reached a high standard, but there is still much to be learned concerning human adaptation. Comment is made on the possible utilization of Antarctica's natural resources bringing increases in polar populations and facilitating the expansion of medical research in the future era of polar medicine.
PubMed ID
1101002 View in PubMed
Less detail

Antarctic medicine--the challenges of being a doctor in an isolated and confined environment.

https://arctichealth.org/en/permalink/ahliterature98536
Source
Wilderness Environ Med. 2009;20(4):383-7
Publication Type
Article
Date
2009
Author
Joanna Mary Coldron
Author Affiliation
British Antarctic Survey Medical Unit, Derriford Hospital, Plymouth, UK. jcoldron@hotmail.com
Source
Wilderness Environ Med. 2009;20(4):383-7
Date
2009
Language
English
Publication Type
Article
Keywords
Antarctic Regions
Cold Climate
Confidentiality
Health Knowledge, Attitudes, Practice
Humans
Physician's Role
Physicians - psychology
Social Behavior
Wounds and Injuries
PubMed ID
20030450 View in PubMed
Less detail

Application of NASA's advanced life support technologies in polar regions.

https://arctichealth.org/en/permalink/ahliterature4348
Source
Adv Space Res. 1997;20(10):2037-44
Publication Type
Article
Date
1997
Author
D L Bubenheim
C. Lewis
Author Affiliation
NASA Ames Research Center, Moffett Field, California 94035-1000, USA.
Source
Adv Space Res. 1997;20(10):2037-44
Date
1997
Language
English
Publication Type
Article
Keywords
Alaska
Antarctic Regions
Arctic Regions
Ecological Systems, Closed
Humans
Interinstitutional Relations
Life Support Systems
Sanitation
Space Simulation
Technology Transfer
United States
United States National Aeronautics and Space Administration - trends
Waste Management - methods
Water Purification
Abstract
NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.
PubMed ID
11542587 View in PubMed
Less detail

193 records – page 1 of 20.