A consistent methodology for assessing the accumulating effects of natural and manmade change on riverine systems has not been developed for a whole host of reasons including a lack of data, disagreement over core elements to consider, and complexity. Accumulated state assessments of aquatic systems is an integral component of watershed cumulative effects assessment. The Yukon River is the largest free flowing river in the world and is the fourth largest drainage basin in North America, draining 855,000 km(2) in Canada and the United States. Because of its remote location, it is considered pristine but little is known about its cumulative state. This review identified 7 "hot spot" areas in the Yukon River Basin including Lake Laberge, Yukon River at Dawson City, the Charley and Yukon River confluence, Porcupine and Yukon River confluence, Yukon River at the Dalton Highway Bridge, Tolovana River near Tolovana, and Tanana River at Fairbanks. Climate change, natural stressors, and anthropogenic stresses have resulted in accumulating changes including measurable levels of contaminants in surface waters and fish tissues, fish and human disease, changes in surface hydrology, as well as shifts in biogeochemical loads. This article is the first integrated accumulated state assessment for the Yukon River basin based on a literature review. It is the first part of a 2-part series. The second article (Dubé et al. 2013a, this issue) is a quantitative accumulated state assessment of the Yukon River Basin where hot spots and hot moments are assessed outside of a "normal" range of variability.
The activity of the pituitary-gonadal axis (PG axis) in pre-migratory and homing chum salmon was examined because endocrine mechanisms underlying the onset of spawning migration remain unknown. Pre-migratory fish were caught in the central Bering Sea in June, July and September 2001, 2002 and 2003, and in the Gulf of Alaska in February 2006. They were classified into immature and maturing adults on the basis of gonadal development. The maturing adults commenced spawning migration to coastal areas by the end of summer, because almost all fish in the Bering Sea were immature in September. In the pituitaries of maturing adults, the copy numbers of FSHbeta mRNA and the FSH content were 2.5- to 100-fold those of the immature fish. Similarly, the amounts of LHbeta mRNA and LH content in the maturing adults were 100- to 1000-fold those of immature fish. The plasma levels of testosterone, 11-ketotestosterone and estradiol were higher than 10 nmol l(-1) in maturing adults, but lower than 1.0 nmol l(-1) in immature fish. The increase in the activity of the PG-axis components had already initiated in the maturing adults while they were still in the Gulf of Alaska in winter. In the homing adults, the pituitary contents and the plasma levels of gonadotropins and plasma sex steroid hormones peaked during upstream migration from the coast to the natal hatchery. The present results thus indicate that the seasonal increase in the activity of the PG axis is an important endocrine event that is inseparable from initiation of spawning migration of chum salmon.
[Adaptive features of the ecology and annual cycle of the willow warbler (Phylloscopus trochilus L.) at the northern boundary of the Siberian part of the range].
The ecology of the willow warbler in the north of Western Siberia is considered, and the adaptations that enable the spread of this species to the Subarctic are analyzed. It is established that one of the key factors that caused the change in the range of this species is the northward distribution of shrubs and, hence, the biomass of insects (available food items of these birds).
Animals that use flight as their mode of transportation must cope with the fact that their migration and orientation performance is strongly affected by the flow of the medium they are moving in, that is by the winds. Different strategies can be used to mitigate the negative effects and benefit from the positive effects of a moving flow. The strategies an animal can use will be constrained by the relationship between the speed of the flow and the speed of the animal's own propulsion in relation to the surrounding air. Here we analyse entomological and ornithological radar data from north-western Europe to investigate how two different nocturnal migrant taxa, the noctuid moth Autographa gamma and songbirds, deal with wind by analysing variation in resulting flight directions in relation to the wind-dependent angle between the animal's heading and track direction. Our results, from fixed locations along the migratory journey, reveal different global strategies used by moths and songbirds during their migratory journeys. As expected, nocturnally migrating moths experienced a greater degree of wind drift than nocturnally migrating songbirds, but both groups were more affected by wind in autumn than in spring. The songbirds' strategies involve elements of both drift and compensation, providing some benefits from wind in combination with destination and time control. In contrast, moths expose themselves to a significantly higher degree of drift in order to obtain strong wind assistance, surpassing the songbirds in mean ground speed, at the cost of a comparatively lower spatiotemporal migratory precision. Moths and songbirds show contrasting but adaptive responses to migrating through a moving flow, which are fine-tuned to the respective flight capabilities of each group in relation to the wind currents they travel within.
Investigations were carried out at two stations of Ornithological Unit, IBPN FEB RAS, located in Nizhnekolymsk District, Yakutia, starting from May 15-20 in 1984, 1985, 1987, 1988, and 1990; at the northern coast of Pukhovoy Bay, Southern Island of Novaya Zemlya starting from June 1 in 1994; at Cape Beliy Nos, the Yugorsky Peninsula, starting from June 1 in 1995-1997. Classic associations are detected in interspecies flocks of sandpipers between the following species: the Pacific golden plover and the curlew sandpiper, the pectoral sandpiper and the long-billed dowitcher, the pectoral sandpiper and the dunlin, the grey plover and the dunlin. However, total amount of birds that form associations is not large. In species of group "A" (the grey plover, the Pacific golden plover, the pectoral sandpiper), no difference has been observed in migratory birds behavior within inter- or conspecific flocks. Species of group "B" (the dunlin, the curlew sandpiper, the long-billed dowitcher), on the contrary, change their behavior sharply depending on whether they belong to an association or not. Species of group "A" do not get any advantages when forming an association. Unlike them, species of group "B" profit from associating: a part of time spent in foraging substantially increases; more time is spent on rest and less time is spent on reconnaissance and vigilance (readiness for actions); safety of birds is enhanced. On the other hand, in species of group "B" there are also disadvantages related with associating: i.e., interspecies competition for food; foraging in suboptimal habitats which, in turn, may lead to notable increase of time spent by birds in foraging. An assumption is put forward that in species of group "B" advantages and limitations of associating cancel each other to a certain extent, and this explains rather small number of birds forming associations.
Recent years have seen a growing consensus that events during one part of an animal's annual cycle can detrimentally affect its future fitness. Notably, migratory species have been shown to commonly display such carry-over effects, facing severe time constraints and physiological stresses that can influence events across seasons. However, to date, no study has examined a full annual cycle to determine when these carry-over effects arise and how long they persist within and across years. Understanding when carry-over effects are created and how they persist is critical to identifying those periods and geographic locations that constrain the annual cycle of a population and determining how selection is acting upon individuals throughout the entire year. Using three consecutive years of migration tracks and four consecutive years of breeding success data, we tested whether carry-over effects in the form of timing deviations during one migratory segment of the annual cycle represent fitness costs that persist or accumulate across the annual cycle for a long-distance migratory bird, the Hudsonian godwit, Limosa haemastica. We found that individual godwits could migrate progressively later than population mean over the course of an entire migration period, especially southbound migration, but that these deviations did not accumulate across the entire year and were not consistently detected among individuals across years. Furthermore, neither the accumulation of lateness during previous portions of the annual cycle nor arrival date at the breeding grounds resulted in individuals suffering reductions in their breeding success or survival. Given their extreme life history, such a lack of carry-over effects suggests that strong selection exists on godwits at each stage of the annual cycle and that carry-over effects may not be able to persist in such a system, but also emphasizes that high-quality stopover and wintering sites are critical to the maintenance of long-distance migratory populations.
Notes
Cites: Proc Biol Sci. 2000 Jan 22;267(1439):191-510687826
A recent study has found that sparrows moved gradually east above the Arctic Circle completely altered their migration strategy after encountering the massive natural change in declination near the magnetic pole. This should not happen--or should it?
It remains unclear why there are only two vascular plant species in Antarctica, Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae). Despite progressing climate warming, there is also just one alien plant species found in the region, introduced by humans and spreading mainly in disturbed habitats. In the present article we try to interpret the data concerning the history of the biota and glaciations of the continent, proceeding from the assumption that both plants migrated to Antarctica during the Oligocene-Pliocene, when it was less isolated and the climate was more favorable for their naturalization. Genetic evidence was also taken into consideration. Our data allow suggesting secondary dispersal in the region, due to transfer by birds with regard of climate changes. With this in mind, we believe that D. antarctica and C. quitensis are migratory relicts.
Partially migratory populations, where one portion of a population conducts seasonal migrations (migrants) while the other remains on a single range (residents), are common in ungulates. Studies that assess trade-offs between migratory strategies typically compare the amount of predation risk and forage resources migrants and residents are exposed to only while on separate ranges and assume both groups intermix completely while on sympatric ranges. Here we provide one of the first tests of this assumption by comparing the amount of overlap between home ranges of GPS-collared migrant and resident elk and fine-scale exposure to wolf predation risk and forage biomass at telemetry locations on a sympatric winter range in west-central Alberta, Canada. Overlap between migrant and resident home ranges increased throughout the winter, and both groups were generally intermixed and exposed to equal forage biomass. During the day, both migrants and residents avoided predation risk by remaining in areas far from timber with high human activity, which wolves avoided. However, at night wolves moved onto the grasslands close to humans and away from timber. Resident elk were consistently closer to areas of human activity and further from timber than migrants, possibly because of a habituation to humans. As a result, resident elk were exposed to higher night-time predation risk than migrants. Our study does not support the assumption that migrant and resident elk are exposed to equal predation risk on their sympatric range when human presence alters predation risk dynamics and habituation to humans is unequal between migratory strategies.