The biological fate of the fish feed additive, ethoxyquin (EQ) was examined in the muscle of Atlantic salmon during 12 weeks of feeding followed by a 2 weeks depuration period. Parent EQ (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline), quinone imine (2,6-dihydro-2,2,4-trimethyl-6-quinolone), de-ethylated EQ (6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline) and EQDM (EQ dimer or 1,8'-di(1,2-dihydro-6-ethoxy-2,2,4-trimethyl-quinoline) were found to be the ubiquitous metabolites of dietary EQ, with EQDM as a main metabolite. A rapid decrease in the level of EQ (2.4 days of half-life) was balanced by an increase in EQDM, giving an unchanged net sum following 2 weeks of depuration. The mandatory 14 days depuration period prior to slaughtering of farmed salmon in Norway was not sufficient for complete elimination of EQ-derived residuals. Post depuration, EQDM accounted for 99% of sum of the two compounds in all treatment groups; possible toxicological effects of EQDM are not known. The individual concentrations of EQ and EQDM and their sum are dependent on EQ level in the feed, consequently, their residual concentrations may be controlled. The theoretical amount of EQ and EQDM consumed in one meal of farmed salmon would be under the recommended ADI, provided that the fish were raised on feed with no more than 150 mg EQ/kg feed, which is the EU maximum limit for EQ in fish feed.
So far aflatoxin has not been detected in crops grown in Sweden but only in imported feedstuffs or in feed mixtures containing imported products. During the survey for other mycotoxins in Swedish crops a compound was detected in oats which, by further analysis, was identified as aflatoxin B1. Quantitative evaluation showed concentrations as high as 2.6 ppm. The fungal population in this highly contaminated sample consisted almost entirely of Aspergillus flavus.
Results from a comparative analysis of the efficiency of countermeasures in agriculture in a long term after the ChNPP accident are presented. Based on criteria such as reduction factor for 137Cs transfer to plants, averted dose and cost of 1 manSv relative ratings of countermeasures are given. Using one of the farms, located in the contaminated area as an example radiological justification of the optimal systems of countermeasures application is provided.
Application of laws, policies, and guidance from the United States and Canada to the regulation of food and feed derived from genetically modified crops: interpretation of composition data.
With the development of recombinant DNA techniques for genetically modifying plants to exhibit beneficial traits, laws and regulations were adopted to ensure the safety of food and feed derived from such plants. This paper focuses on the regulation of genetically modified (GM) plants in Canada and the United States, with emphasis on the results of the compositional analysis routinely utilized as an indicator of possible unintended effects resulting from genetic modification. This work discusses the mandate of Health Canada and the Canadian Food Inspection Agency as well as the U.S. Food and Drug Administration's approach to regulating food and feed derived from GM plants. This work also addresses how publications by the Organisation for Economic Co-operation and Development and Codex Alimentarius fit, particularly with defining the importance and purpose of compositional analysis. The importance of study design, selection of comparators, use of literature, and commercial variety reference values is also discussed.
The application of short-lived nuclides, especially in connection with the 6LiD-converter, in biological and environmental samples is demonstrated on I and Br determination in human urine, on I in pet food, and on the analysis of all the halogens in volcanic gases in a single activation. Trace element determination in lichens indicates polluted and unpolluted areas. The use of the .74-s 38mCl enables the rapid screening of great number of samples.
This study aimed to assess the astaxanthin (Ax) accumulation in hepatocytes isolated from farmed Atlantic salmon fed different diets (rich marine, poor, poor with marine phospholipids (MPL) and poor with docosahexaenoic acid (DHA)). Nuclear magnetic resonance (NMR) spectroscopy was used for the Ax detection and quantification. The use of the 13C-enriched Ax allowed the assessment of short-time Ax metabolism. The substitution of fish oil and meal in fish feed on plant analogs and the addition of MPL caused further catabolism and decrease of Ax accumulation in hepatocytes from 17 to about 6 mg/kg or to almost zero in the case of DHA addition. Signals assignment of the native and 13C-enriched astaxanthin in acetone were performed using 1D and 2D NMR spectra.
Even at the low exposure level of cadmium found in this study population living on farms in southern Sweden, there was an indication of effect on biochemical markers of renal function. Women had higher blood cadmium (BCd) and urinary cadmium (UCd) than men, which can be explained by higher absorption of Cd due to low iron status. In the present study, Cd in pig kidneys could not be used to predict human BCd or UCd even though cereals are a substantial part of both the human and the pig diet. The contribution of Cd from locally produced food to the total dietary intake in humans was relatively low and varied and the intake of Cd did not correlate with BCd or UCd. In contrast, Cd levels in pig kidney were significantly related to Cd levels in feed. However, there was no relationship between the locally produced cereals, constituting the main part of the feed, and Cd in pig kidneys. In pig feed, other non-locally produced ingredients contributed to a large part of the Cd in feed. The Cd in non-locally produced feed ingredients reaches the local circulation via excretion in faeces and application of manure to arable soils and will lead to increased levels in the crops. As indicated by experimental data from animals, neurochemical and neurobehavioral effects during development need to be further explored as sensitive endpoints for cadmium toxicity.
Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed.
In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified.
The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU.
Radionuclides, especially the long-lived 137Cs (physical half-life 30 years), are accumulated efficiently in the northern, subarctic, lichen-reindeer-man foodchain. Until the Chernobyl accident the fallout nuclides studied originated from nuclear weapons tests. After this accident some fresh fallout was deposited in Finnish Lapland. Lichens grow very slowly and collect nutrients very efficiently from air, rain and snow. During winter the basic fodder plants for reindeer are lichens and some winter-green plants, shrubs and dry leaves. During the bare-ground season, the reindeer eat various grasses, herbs and leaves etc. Lichens constitute 30-50 per cent of the entire vegetable mass consumed by the reindeer in a year. The highest 137Cs-concentration 2500 Bq/kg dry weight was found in lichen in the middle of the 1960s. In 1985 the concentration had decreased to about 240 Bq/kg dry weight. After the Chernobyl accident the 137Cs-concentration in lichen varied from 200 to 2000 Bq/kg dry weight in Finnish Lapland. In reindeer fodder plant samples collected in the 1980s before the Chernobyl accident the 137Cs-concentration varied from 5 to 970 Bq/kg dry weight. The highest 137Cs-concentration in reindeer meat, about 2500 Bq/kg fresh weight, was found in 1965 and thereafter decreased to about 300 Bq/kg fresh weight in the winter before the Chernobyl accident. After the accident the mean 137Cs-concentration in reindeer meat from the 1986-87 slaughtering period was 720 Bq/kg fresh weight and in 1987-88, 630 Bq/kg fresh weight.