We examined the effect of ozone (O(3)) on Norway spruce (Picea abies) needle epicuticular wax over three seasons at the Kranzberg Ozone Fumigation Experiment. Exposure to 2x ambient O(3) ranged from 64.5 to 74.2 microl O(3) l(-1) h AOT40, and 117.1 to 123.2 nl O(3) l(-1) 4th highest daily maximum 8-h average O(3) concentration. The proportion of current-year needle surface covered by wax tubes, tube aggregates, and plates decreased (P=0.011) under 2x O(3). Epistomatal chambers had increased deposits of amorphous wax. Proportion of secondary alcohols varied due to year (P=0.004) and O(3) treatment (P=0.029). Secondary alcohols were reduced by 9.1% under 2x O(3). Exposure to 2x O(3) increased (P=0.037) proportions of fatty acids by 29%. Opposing trends in secondary alcohols and fatty acids indicate a direct action of O(3) on wax biosynthesis. These results demonstrate O(3)-induced changes in biologically important needle surface characteristics of 50-year-old field-grown trees.
Many environmental factors, both indoors and outdoors, can cause or worsen respiratory disease. Although in many cases individuals have little influence over environmental exposures (e.g., weather conditions), there are many (such as environmental tobacco smoke (ETS) and outdoor air pollution) where interventions can improve health. While for environmental exposures such as air pollution, remediation largely devolves to the government, for exposures such as ETS advice to individuals in these settings will confer benefit. Climate change has begun to feature more and more in the context of health but how this may affect pulmonary disease remains debatable. It is possible that heat associated changes in allergen exposures may be more than counterbalanced by potential reductions in cold related exacerbations of diseases such as COPD. An improved assessment of environmental exposures is key in how we approach the effects of the environment on lung disease which would allow better understanding of gene-environment interactions and how remediation might influence population health for the better.
Norway spruce seedlings were grown under greenhouse conditions in Rootrainers with a vermiculite-peat moss mixture under various N-regimes for 6 months. Either ammonium or nitrate was applied in loads of 100 or 800 kg N ha(-1) year(-1) to seedlings which were either non-mycorrhizal or inoculated with the mycorrhizal fungi Hebeloma crustuliniforme or Laccaria bicolor. The use of increasing N loads enhanced shoot and total biomass, whereas root/shoot ratio, number of short roots and mycorrhization decreased. A significant enhancement of the concentration and content was obvious for the element N, whereas a significant decrease was obvious for P and Zn concentrations. The use of ammonium, as opposed to nitrate, significantly enhanced the biomass and the numbers of short roots, and reduced the root/shoot ratios, but did not influence the mycorrhization. It further significantly enhanced the N concentrations in roots and shoots. Fungal inoculation with H. crustuliniforme or L. bicolor compared to non-inoculated controls significantly enhanced shoot and total biomass, but reduced root/shoot ratios. The mycorrhization further significantly enhanced N and P concentrations and contents, but reduced Mn. Overall, the mycorrhization improved the P nutrition of the seedlings independently on the applied N loads or N sources. Dose response curves using ammonium nitrate as N source with a maximum load of 1600 kg N ha(-1) year(-1) applied on seedlings associated with H. crustuliniforme revealed that the maximum growth was reached at a load of 800 kg N ha(-1) year(-1) with a simultaneous decrease of the mycorrhization. In both shoots and roots, N concentrations increased constantly with increasing N loads, while P, Ca, and Zn concentrations decreased constantly.