Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Environmental health and justice and the right to research: institutional review board denials of community-based chemical biomonitoring of breast milk.
Recently, conflicts and challenges have emerged regarding environmental justice and research ethics for some indigenous communities. Alaska Community Action on Toxics (ACAT) responded to community requests for breast milk biomonitoring and conceived the Breast Milk Pilot Study (BMPS). Despite having community support and federal and private funding, the BMPS remains incomplete due to repeated disapprovals by the Alaska Area IRB (Institutional Review Board). In this commentary, we explore the consequences of years of IRB denials, in terms of health inequalities, environmental justice, and research ethics. We highlight the greater significance of this story with respect to research in Alaska Native communities, biomonitoring, and global toxics regulation. We offer suggestions to community-based researchers conducting biomonitoring projects on how to engage with IRBs in order to cultivate reflective, context-based research ethics that better consider the needs and concerns of communities.
Notes
Cites: J Am Coll Dent. 2014 Summer;81(3):4-1325951677
Cites: Environ Health Perspect. 2001 Jan;109(1):75-8811171529
Cites: Environ Health Perspect. 2002 Apr;110 Suppl 2:155-911929724
Cites: J Toxicol Environ Health A. 2002 Nov 22;65(22):1867-7912470491
Cites: Environ Health Perspect. 2003 Jan;111(1):109-1412515688
Perfluoroalkyl substances (PFASs) are known to accumulate in traditional food animals of the Arctic, and arctic indigenous peoples may be exposed via consumption of subsistence-harvested animals. PFASs are suspected of disrupting thyroid hormone homeostasis in humans. The aim of this study is to assess the relationship between serum PFASs and thyroid function in a remote population of Alaska Natives. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska. The concentrations of 13 PFASs, as well as free and total thyroxine (T4), free and total triiodothyronine (T3), and thyrotropin (TSH) were quantified in serum samples. The relationships between circulating concentrations of PFASs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Several PFASs, including perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), were positively associated with TSH concentrations when modeled individually. PFOS and PFNA were significantly associated with free T3 and PFNA was significantly associated with total T3 in models with PFAS*sex interactive terms; these associations suggested negative associations in men and positive associations in women. PFASs were not significantly associated with concentrations of free or total T4. Serum PFASs are associated with circulating thyroid hormone concentrations in a remote population of Alaska Natives. The effects of PFAS exposure on thyroid hormone homeostasis may differ between sexes.
Perfluoroalkyl substances (PFASs) are known to accumulate in traditional food animals of the Arctic, and arctic indigenous peoples may be exposed via consumption of subsistence-harvested animals. PFASs are suspected of disrupting thyroid hormone homeostasis in humans. The aim of this study is to assess the relationship between serum PFASs and thyroid function in a remote population of Alaska Natives. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska. The concentrations of 13 PFASs, as well as free and total thyroxine (T4), free and total triiodothyronine (T3), and thyrotropin (TSH) were quantified in serum samples. The relationships between circulating concentrations of PFASs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Several PFASs, including perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), were positively associated with TSH concentrations when modeled individually. PFOS and PFNA were significantly associated with free T3 and PFNA was significantly associated with total T3 in models with PFAS*sex interactive terms; these associations suggested negative associations in men and positive associations in women. PFASs were not significantly associated with concentrations of free or total T4. Serum PFASs are associated with circulating thyroid hormone concentrations in a remote population of Alaska Natives. The effects of PFAS exposure on thyroid hormone homeostasis may differ between sexes.
Many Alaska Native communities rely on a traditional marine diet that contains persistent organic pollutants (POPs). The indoor environment is also a source of POPs. Polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFASs) are present both in the traditional diet and the home indoor environment.
We assessed exposure to PBDEs and PFASs among residents of two remote Alaska Native villages on St. Lawrence Island. Ninespine stickleback (Pungitious pungitious) and Alaska blackfish (Dallia pectoralis) were used to detect accumulation of these compounds in the local environment.
Concentrations of PBDEs and PFASs were measured in dust collected from 49 households on St. Lawrence Island, as well as in blood serum from 85 island residents. Resident ninespine stickleback and Alaska blackfish were used as sentinels to detect accumulation of PBDEs and PFASs in the food web.
Serum concentrations of perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were elevated, despite low concentrations of PFASs in dust samples. Concentrations of PBDEs in dust and serum were similar to those from the contiguous United States. Statistical associations between dust and serum concentrations are apparent for a small number of PBDEs, suggesting a possible route of exposure. Predominant compounds were similar between human sera and stickleback; however, blackfish accumulated PFASs not found in either stickleback or human sera.
Household dust contributes to PBDE exposure, but not PFAS exposure. Elevated concentrations of long chain PFASs in serum are likely due to exposure from traditional foods. The presence of both PFASs and PBDEs in sentinel fish species suggests atmospheric deposition and bioaccumulation, as well as local environmental contamination.
Many Alaska Native communities rely on a traditional marine diet that contains persistent organic pollutants (POPs). The indoor environment is also a source of POPs. Polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFASs) are present both in the traditional diet and the home indoor environment.
We assessed exposure to PBDEs and PFASs among residents of two remote Alaska Native villages on St. Lawrence Island. Ninespine stickleback (Pungitious pungitious) and Alaska blackfish (Dallia pectoralis) were used to detect accumulation of these compounds in the local environment.
Concentrations of PBDEs and PFASs were measured in dust collected from 49 households on St. Lawrence Island, as well as in blood serum from 85 island residents. Resident ninespine stickleback and Alaska blackfish were used as sentinels to detect accumulation of PBDEs and PFASs in the food web.
Serum concentrations of perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were elevated, despite low concentrations of PFASs in dust samples. Concentrations of PBDEs in dust and serum were similar to those from the contiguous United States. Statistical associations between dust and serum concentrations are apparent for a small number of PBDEs, suggesting a possible route of exposure. Predominant compounds were similar between human sera and stickleback; however, blackfish accumulated PFASs not found in either stickleback or human sera.
Household dust contributes to PBDE exposure, but not PFAS exposure. Elevated concentrations of long chain PFASs in serum are likely due to exposure from traditional foods. The presence of both PFASs and PBDEs in sentinel fish species suggests atmospheric deposition and bioaccumulation, as well as local environmental contamination.
Indigenous American communities face disproportionate health burdens and environmental health risks compared with the average North American population. These health impacts are issues of both environmental and reproductive justice.
In this commentary, we review five indigenous communities in various stages of environmental health research and discuss the intersection of environmental health and reproductive justice issues in these communities as well as the limitations of legal recourse.
The health disparities impacting life expectancy and reproductive capabilities in indigenous communities are due to a combination of social, economic, and environmental factors. The system of federal environmental and Indian law is insufficient to protect indigenous communities from environmental contamination. Many communities are interested in developing appropriate research partnerships in order to discern the full impact of environmental contamination and prevent further damage.
Continued research involving collaborative partnerships among scientific researchers, community members, and health care providers is needed to determine the impacts of this contamination and to develop approaches for remediation and policy interventions.
Notes
Cites: Am J Public Health. 2011 Dec;101 Suppl 1:S12-422039043
Cites: J Toxicol Environ Health A. 2011;74(18):1195-21421797772
Cites: Environ Health Perspect. 2002 Apr;110 Suppl 2:259-6411929736
Cites: Public Health Rep. 2003 Nov-Dec;118(6):518-3014563909
Cites: J Toxicol Environ Health B Crit Rev. 2004 Jul-Aug;7(4):297-31715205046
Cites: Environ Health Perspect. 1998 Jun;106 Suppl 3:833-409646046
Cites: Am J Epidemiol. 1998 Jul 15;148(2):164-729676698
Marine mammals (bowhead whale, walrus, and various seals) constitute the major component of the diet of the Yupik people of St. Lawrence Island, Alaska. St. Lawrence Island residents have higher serum concentrations of polychlorinated biphenyls (PCB) than in the general U.S. population. In order to determine potential sources, traditional food samples were collected from 2004 to 2009 and analyzed for PCBs, three chlorinated pesticides, and seven heavy metals (mercury, copper, zinc, arsenic, selenium, cadmium, and lead). Concentrations of PCB in rendered oils (193-421 ppb) and blubber (73-317 ppb) from all marine mammal samples were at levels that trigger advisories for severely restricted consumption, using U.S. Environmental Protection Agency (EPA) fish consumption advisories. Concentrations of pesticides were lower, but were still elevated. The highest PCB concentrations were found in polar bear (445 ppb) and the lowest in reindeer adipose tissue (2 ppb). Marine mammal and polar bear meat in general have PCB concentrations that were 1-5% of those in rendered oils or adipose tissue. PCB concentrations in organs were higher than meat. Concentrations of metals in oils and meats from all species were relatively low, but increased levels of mercury, cadmium, copper, and zinc were present in some liver and kidney samples. Mercury and arsenic were found in lipid-rich samples, indicating organometals. These results show that the source of the elevated concentrations of these contaminants in the Yupik population is primarily from consumption of marine mammal blubber and rendered oils.