Skip header and navigation

3 records – page 1 of 1.

The AGES-Reykjavik Study suggests that change in kidney measures is associated with subclinical brain pathology in older community-dwelling persons.

https://arctichealth.org/en/permalink/ahliterature292670
Source
Kidney Int. 2018 Jun 27; :
Publication Type
Journal Article
Date
Jun-27-2018
Author
Sanaz Sedaghat
Jie Ding
Gudny Eiriksdottir
Mark A van Buchem
Sigurdur Sigurdsson
M Arfan Ikram
Osorio Meirelles
Vilmundur Gudnason
Andrew S Levey
Lenore J Launer
Author Affiliation
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Source
Kidney Int. 2018 Jun 27; :
Date
Jun-27-2018
Language
English
Publication Type
Journal Article
Abstract
Decreased glomerular filtration rate (GFR) and albuminuria may be accompanied by brain pathology. Here we investigated whether changes in these kidney measures are linked to development of new MRI-detected infarcts and microbleeds, and progression of white matter hyperintensity volume. The study included 2671 participants from the population-based AGES-Reykjavik Study (mean age 75, 58.7% women). GFR was estimated from serum creatinine, and albuminuria was assessed by urinary albumin-to-creatinine ratio. Brain MRI was acquired at baseline (2002-2006) and 5 years later (2007-2011). New MRI-detected infarcts and microbleeds were counted on the follow-up scans. White matter hyperintensity progression was estimated as percent change in white matter hyperintensity volumes between the two exams. Participants with a large eGFR decline (over 3 ml/min per 1.73m2 per year) had more incident subcortical infarcts (odds ratio 1.53; 95% confidence interval 1.05, 2.22), and more marked progression of white matter hyperintensity volume (difference: 8%; 95% confidence interval: 4%, 12%), compared to participants without a large decline. Participants with incident albuminuria (over 30 mg/g) had 21% more white matter hyperintensity volume progression (95% confidence interval: 14%, 29%) and 1.86 higher odds of developing new deep microbleeds (95% confidence interval 1.16, 2.98), compared to participants without incident albuminuria. The findings were independent of cardiovascular risk factors. Changes in kidney measures were not associated with occurrence of cortical infarcts. Thus, larger changes in eGFR and albuminuria are associated with increased risk for developing manifestations of cerebral small vessel disease. Individuals with larger changes in these kidney measures should be considered as a high risk population for accelerated brain pathology.
PubMed ID
29960746 View in PubMed
Less detail

The AGES-Reykjavik Study suggests that change in kidney measures is associated with subclinical brain pathology in older community-dwelling persons.

https://arctichealth.org/en/permalink/ahliterature300494
Source
Kidney Int. 2018 09; 94(3):608-615
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Date
09-2018
Author
Sanaz Sedaghat
Jie Ding
Gudny Eiriksdottir
Mark A van Buchem
Sigurdur Sigurdsson
M Arfan Ikram
Osorio Meirelles
Vilmundur Gudnason
Andrew S Levey
Lenore J Launer
Author Affiliation
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Source
Kidney Int. 2018 09; 94(3):608-615
Date
09-2018
Language
English
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Keywords
Aged
Albuminuria - physiopathology - urine
Cerebral Small Vessel Diseases - diagnosis - epidemiology
Creatinine - urine
Disease Progression
Female
Follow-Up Studies
Glomerular Filtration Rate - physiology
Humans
Incidence
Independent living
Kidney - physiopathology
Magnetic Resonance Imaging
Male
Prospective Studies
Renal Insufficiency, Chronic - physiopathology - urine
Risk factors
Serum Albumin
White Matter - diagnostic imaging - pathology
Abstract
Decreased glomerular filtration rate (GFR) and albuminuria may be accompanied by brain pathology. Here we investigated whether changes in these kidney measures are linked to development of new MRI-detected infarcts and microbleeds, and progression of white matter hyperintensity volume. The study included 2671 participants from the population-based AGES-Reykjavik Study (mean age 75, 58.7% women). GFR was estimated from serum creatinine, and albuminuria was assessed by urinary albumin-to-creatinine ratio. Brain MRI was acquired at baseline (2002-2006) and 5 years later (2007-2011). New MRI-detected infarcts and microbleeds were counted on the follow-up scans. White matter hyperintensity progression was estimated as percent change in white matter hyperintensity volumes between the two exams. Participants with a large eGFR decline (over 3 ml/min/1.73m2 per year) had more incident subcortical infarcts (odds ratio 1.53; 95% confidence interval 1.05, 2.22), and more marked progression of white matter hyperintensity volume (difference: 8%; 95% confidence interval: 4%, 12%), compared to participants without a large decline. Participants with incident albuminuria (over 30 mg/g) had 21% more white matter hyperintensity volume progression (95% confidence interval: 14%, 29%) and 1.86 higher odds of developing new deep microbleeds (95% confidence interval 1.16, 2.98), compared to participants without incident albuminuria. The findings were independent of cardiovascular risk factors. Changes in kidney measures were not associated with occurrence of cortical infarcts. Thus, larger changes in eGFR and albuminuria are associated with increased risk for developing manifestations of cerebral small vessel disease. Individuals with larger changes in these kidney measures should be considered as a high risk population for accelerated brain pathology.
PubMed ID
29960746 View in PubMed
Less detail

Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer's disease: Pooled analysis from 5 cohorts.

https://arctichealth.org/en/permalink/ahliterature298160
Source
PLoS One. 2019; 14(2):e0212293
Publication Type
Journal Article
Date
2019
Author
Galit Weinstein
Kendra L Davis-Plourde
Sarah Conner
Jayandra J Himali
Alexa S Beiser
Anne Lee
Andreea M Rawlings
Sanaz Sedaghat
Jie Ding
Erin Moshier
Cornelia M van Duijn
Michal S Beeri
Elizabeth Selvin
M Arfan Ikram
Lenore J Launer
Mary N Haan
Sudha Seshadri
Author Affiliation
School of Public Health, University of Haifa, Haifa, Israel.
Source
PLoS One. 2019; 14(2):e0212293
Date
2019
Language
English
Publication Type
Journal Article
Abstract
To determine whether classes of diabetes medications are associated with cognitive health and dementia risk, above and beyond their glycemic control properties.
Findings were pooled from 5 population-based cohorts: the Framingham Heart Study, the Rotterdam Study, the Atherosclerosis Risk in Communities (ARIC) Study, the Aging Gene-Environment Susceptibility-Reykjavik Study (AGES) and the Sacramento Area Latino Study on Aging (SALSA). Differences between users and non-users of insulin, metformin and sulfonylurea were assessed in each cohort for cognitive and brain MRI measures using linear regression models, and cognitive decline and dementia/AD risk using mixed effect models and Cox regression analyses, respectively. Findings were then pooled using meta-analytic techniques, including 3,590 individuals with diabetes for the prospective analysis.
After adjusting for potential confounders including indices of glycemic control, insulin use was associated with increased risk of new-onset dementia (pooled HR (95% CI) = 1.58 (1.18, 2.12);p = 0.002) and with a greater decline in global cognitive function (ß = -0.014±0.007;p = 0.045). The associations with incident dementia remained similar after further adjustment for renal function and excluding persons with diabetes whose treatment was life-style change only. Insulin use was not related to cognitive function nor to brain MRI measures. No significant associations were found between metformin or sulfonylurea use and outcomes of brain function and structure. There was no evidence of significant between-study heterogeneity.
Despite its advantages in controlling glycemic dysregulation and preventing complications, insulin treatment may be associated with increased adverse cognitive outcomes possibly due to a greater risk of hypoglycemia.
PubMed ID
30768625 View in PubMed
Less detail