Skip header and navigation

2 records – page 1 of 1.

A < 1.7 cM interval is responsible for Dmo1 obesity phenotypes in OLETF rats.

https://arctichealth.org/en/permalink/ahliterature47295
Source
Clin Exp Pharmacol Physiol. 2004 Jan-Feb;31(1-2):110-2
Publication Type
Article
Author
Takeshi K Watanabe
Shiro Okuno
Yuki Yamasaki
Toshihide Ono
Keiko Oga
Ayako Mizoguchi-Miyakita
Hideo Miyao
Mikio Suzuki
Hiroshi Momota
Yoshihiro Goto
Hiroichi Shinomiya
Haretsugu Hishigaki
Isamu Hayashi
Toshihiro Asai
Shigeyuki Wakitani
Toshihisa Takagi
Yusuke Nakamura
Akira Tanigami
Author Affiliation
Otsuka GEN Research Institute, Otsuka Pharmaceutical Co. Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan. tkw_watanabe@research.otsuka.co.jp
Source
Clin Exp Pharmacol Physiol. 2004 Jan-Feb;31(1-2):110-2
Language
English
Publication Type
Article
Keywords
Animals
Animals, Congenic
Body Weight - genetics
Crosses, Genetic
Diabetes Mellitus - genetics
Female
Hyperglycemia - genetics
Hyperlipidemia - blood - genetics
Male
Obesity
Phenotype
Rats
Rats, Inbred BN
Rats, Inbred OLETF
Research Support, Non-U.S. Gov't
Abstract
1. Dmo1 (Diabetes Mellitus OLETF type I) is a major quantitative trait locus for dyslipidaemia, obesity and diabetes phenotypes of male Otsuka Long Evans Tokushima Fatty (OLETF) rats. 2. Our congenic lines, produced by transferring Dmo1 chromosomal segments from the non-diabetic Brown Norway (BN) rat into the OLETF strain, have confirmed the strong, wide-range therapeutic effects of Dmo1 on dyslipidaemia, obesity and diabetes in the fourth (BC4) and fifth (BC5) generations of congenic animals. Analysis of a relatively small number of BC5 rats (n = 71) suggested that the critical Dmo1 interval lies within a
PubMed ID
14756694 View in PubMed
Less detail

Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat.

https://arctichealth.org/en/permalink/ahliterature47057
Source
Clin Exp Pharmacol Physiol. 2005 May-Jun;32(5-6):355-66
Publication Type
Article
Author
Takeshi K Watanabe
Mikio Suzuki
Yuki Yamasaki
Shiro Okuno
Haretsugu Hishigaki
Toshihide Ono
Keiko Oga
Ayako Mizoguchi-Miyakita
Atsushi Tsuji
Naohide Kanemoto
Shigeyuki Wakitani
Toshihisa Takagi
Yusuke Nakamura
Akira Tanigami
Author Affiliation
Otsuka GEN Research Institute, Otsuka Pharmaceutical Co. Ltd, Tokushima, Japan. tkw_watanabe@research.otsuka.co.jp
Source
Clin Exp Pharmacol Physiol. 2005 May-Jun;32(5-6):355-66
Language
English
Publication Type
Article
Keywords
Animals
Base Sequence - genetics
Comparative Study
Dyslipidemias - genetics
Genotype
Hyperphagia - genetics
Male
Mutation - genetics
Obesity - genetics
Quantitative Trait Loci - genetics
Rats
Rats, Inbred BN
Rats, Inbred OLETF
Receptors, G-Protein-Coupled - genetics
Species Specificity
Abstract
1. We have confirmed the Diabetes Mellitus OLETF type I (Dmo1) effect on hyperphagia, dyslipidaemia and obesity in the Otsuka Long-Evans Tokushima Fatty (OLETF) strain. The critical interval was narrowed down to 570 kb between D1Got258 to p162CA1 by segregation analyses using congenic lines. 2. Within the critical 570 kb region of the Dmo1 locus, we identified the G-protein-coupled receptor gene GPR10 as the causative gene mutated in the OLETF strain. The ATG translation initiation codon of GPR10 is changed into ATA in this strain and, so, is unavailable for the initiation of translation. 3. The GPR10 protein has a cognate ligand, namely prolactin-releasing peptide (PrRP). Centrally administered PrRP suppressed the food intake of congenic rats that have a Brown Norway derived Dmo1 region (i.e. with wild-type GPR10), but did not suppress that of the OLETF strain, indicating that GPR10 is without function and could explain hyperphagia in the OLETF strain. 4. Moreover, when restricted in food volume to the same level consumed by the congenic strain, OLETF rats showed few differences in the parameters of dyslipidaemia and obesity compared with congenic strains. 5. Taken together, these results demonstrate that the mutated GPR10 receptor is responsible for the hyperphagia leading to obesity and dyslipidaemia in the obese diabetic strain rat.
PubMed ID
15854142 View in PubMed
Less detail