Skip header and navigation

2 records – page 1 of 1.

Bioelectrochemical anaerobic sewage treatment technology for Arctic communities.

https://arctichealth.org/en/permalink/ahliterature279568
Source
Environ Sci Pollut Res Int. 2017 Jan 20;
Publication Type
Article
Date
Jan-20-2017
Author
Boris Tartakovsky
Yehuda Kleiner
Michelle-France Manuel
Source
Environ Sci Pollut Res Int. 2017 Jan 20;
Date
Jan-20-2017
Language
English
Publication Type
Article
Abstract
This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode-biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5-23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90-97% and an effluent BOD5 concentration as low as 7 mg L(-1). An electricity consumption of 0.6 kWh kg(-1) of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.
PubMed ID
28105595 View in PubMed
Less detail

Bioelectrochemical anaerobic sewage treatment technology for Arctic communities.

https://arctichealth.org/en/permalink/ahliterature297771
Source
Environ Sci Pollut Res Int. 2018 Nov; 25(33):32844-32850
Publication Type
Journal Article
Date
Nov-2018
Author
Boris Tartakovsky
Yehuda Kleiner
Michelle-France Manuel
Author Affiliation
National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, H4P 2R2, Canada. Boris.Tartakovsky@cnrc-nrc.gc.ca.
Source
Environ Sci Pollut Res Int. 2018 Nov; 25(33):32844-32850
Date
Nov-2018
Language
English
Publication Type
Journal Article
Keywords
Anaerobiosis
Biofuels
Biological Oxygen Demand Analysis
Bioreactors - microbiology
Carbon - metabolism
Electrochemical Techniques - instrumentation - methods
Electrolysis
Equipment Design
Methane - biosynthesis
Sewage - chemistry
Temperature
Waste Disposal, Fluid - instrumentation - methods
Waste Water - chemistry
Abstract
This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode-biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5-23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90-97% and an effluent BOD5 concentration as low as 7 mg L-1. An electricity consumption of 0.6 kWh kg-1 of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.
PubMed ID
28105595 View in PubMed
Less detail