Skip header and navigation

7 records – page 1 of 1.

Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns.

https://arctichealth.org/en/permalink/ahliterature299087
Source
Sci Total Environ. 2019 Apr 10; 660:1502-1512
Publication Type
Journal Article
Date
Apr-10-2019
Author
Christine L Olson
Martin Jiskra
Jeroen E Sonke
Daniel Obrist
Author Affiliation
Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.
Source
Sci Total Environ. 2019 Apr 10; 660:1502-1512
Date
Apr-10-2019
Language
English
Publication Type
Journal Article
Keywords
Alaska
Climate change
Lichens - chemistry
Mercury - analysis - chemistry
Mercury Isotopes - analysis - chemistry
Soil Pollutants - analysis
Tundra
Abstract
Vegetation uptake of atmospheric mercury (Hg) is an important mechanism enhancing atmospheric Hg deposition via litterfall and senescence. We here report Hg concentrations and pool sizes of different plant functional groups and plant species across nine tundra sites in northern Alaska. Significant spatial differences were observed in bulk vegetation Hg concentrations at Toolik Field station (52?±?9?µg?kg-1), Eight Mile Lake Observatory (40?±?0.2?µg?kg-1), and seven sites along a transect from Toolik Field station to the Arctic coast (36?±?9?µg?kg-1). Hg concentrations in non-vascular vegetation including feather and peat moss (58?±?6?µg?kg-1 and 34?±?2?µg?kg-1, respectively) and brown and white lichen (41?±?2?µg?kg-1 and 34?±?2?µg?kg-1, respectively), were three to six times those of vascular plant tissues (8?±?1?µg?kg-1 in dwarf birch leaves and 9?±?1?µg?kg-1 in tussock grass). A high representation of nonvascular vegetation in aboveground biomass resulted in substantial Hg mass contained in tundra aboveground vegetation (29?µg?m-2), which fell within the range of foliar Hg mass estimated for forests in the United States (15 to 45?µg?m-2) in spite of much shorter growing seasons. Hg stable isotope signatures of different plant species showed that atmospheric Hg(0) was the dominant source of Hg to tundra vegetation. Mass-dependent isotope signatures (d202Hg) in vegetation relative to atmospheric Hg(0) showed pronounced shifts towards lower values, consistent with previously reported isotopic fractionation during foliar uptake of Hg(0). Mass-independent isotope signatures (?199Hg) of lichen were more positive relative to atmospheric Hg(0), indicating either photochemical reduction of Hg(II) or contributions of inorganic Hg(II) from atmospheric deposition and/or dust. ?199Hg and ?200Hg values in vascular plant species were similar to atmospheric Hg(0) suggesting that overall photochemical reduction and subsequent re-emission was relatively insignificant in these tundra ecosystems, in agreement with previous Hg(0) ecosystem flux measurements.
PubMed ID
30743942 View in PubMed
Less detail

Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns.

https://arctichealth.org/en/permalink/ahliterature298184
Source
Sci Total Environ. 2019 Apr 10; 660:1502-1512
Publication Type
Journal Article
Date
Apr-10-2019
Author
Christine L Olson
Martin Jiskra
Jeroen E Sonke
Daniel Obrist
Author Affiliation
Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.
Source
Sci Total Environ. 2019 Apr 10; 660:1502-1512
Date
Apr-10-2019
Language
English
Publication Type
Journal Article
Abstract
Vegetation uptake of atmospheric mercury (Hg) is an important mechanism enhancing atmospheric Hg deposition via litterfall and senescence. We here report Hg concentrations and pool sizes of different plant functional groups and plant species across nine tundra sites in northern Alaska. Significant spatial differences were observed in bulk vegetation Hg concentrations at Toolik Field station (52?±?9?µg?kg-1), Eight Mile Lake Observatory (40?±?0.2?µg?kg-1), and seven sites along a transect from Toolik Field station to the Arctic coast (36?±?9?µg?kg-1). Hg concentrations in non-vascular vegetation including feather and peat moss (58?±?6?µg?kg-1 and 34?±?2?µg?kg-1, respectively) and brown and white lichen (41?±?2?µg?kg-1 and 34?±?2?µg?kg-1, respectively), were three to six times those of vascular plant tissues (8?±?1?µg?kg-1 in dwarf birch leaves and 9?±?1?µg?kg-1 in tussock grass). A high representation of nonvascular vegetation in aboveground biomass resulted in substantial Hg mass contained in tundra aboveground vegetation (29?µg?m-2), which fell within the range of foliar Hg mass estimated for forests in the United States (15 to 45?µg?m-2) in spite of much shorter growing seasons. Hg stable isotope signatures of different plant species showed that atmospheric Hg(0) was the dominant source of Hg to tundra vegetation. Mass-dependent isotope signatures (d202Hg) in vegetation relative to atmospheric Hg(0) showed pronounced shifts towards lower values, consistent with previously reported isotopic fractionation during foliar uptake of Hg(0). Mass-independent isotope signatures (?199Hg) of lichen were more positive relative to atmospheric Hg(0), indicating either photochemical reduction of Hg(II) or contributions of inorganic Hg(II) from atmospheric deposition and/or dust. ?199Hg and ?200Hg values in vascular plant species were similar to atmospheric Hg(0) suggesting that overall photochemical reduction and subsequent re-emission was relatively insignificant in these tundra ecosystems, in agreement with previous Hg(0) ecosystem flux measurements.
PubMed ID
30743942 View in PubMed
Less detail

Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources.

https://arctichealth.org/en/permalink/ahliterature266300
Source
Environ Sci Technol. 2015 Jan 6;49(1):177-85
Publication Type
Article
Date
Jan-6-2015
Author
Jan G Wiederhold
Ulf Skyllberg
Andreas Drott
Martin Jiskra
Sofi Jonsson
Erik Björn
Bernard Bourdon
Ruben Kretzschmar
Source
Environ Sci Technol. 2015 Jan 6;49(1):177-85
Date
Jan-6-2015
Language
English
Publication Type
Article
Keywords
Chemical Fractionation
Environment
Environmental monitoring
Environmental pollution
Geologic Sediments - analysis
Industry
Isotopes
Mercury - analysis
Mercury Compounds - isolation & purification
Mercury Isotopes - analysis
Sweden
Abstract
Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 µg g(-1), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF d(202)Hg: -0.2‰ to -0.5‰; MIF ?(199)Hg: -0.05‰ to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (d(202)Hg: -2.1‰ to 0.6‰; ?(199)Hg: -0.19‰ to 0.03‰) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1‰ heavier in d(202)Hg than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments.
PubMed ID
25437501 View in PubMed
Less detail

A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

https://arctichealth.org/en/permalink/ahliterature295713
Source
Ambio. 2018 Mar; 47(2):116-140
Publication Type
Journal Article
Review
Date
Mar-2018
Author
Daniel Obrist
Jane L Kirk
Lei Zhang
Elsie M Sunderland
Martin Jiskra
Noelle E Selin
Author Affiliation
Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, One University Ave, Lowell, MA, 01854, USA. daniel_obrist@uml.edu.
Source
Ambio. 2018 Mar; 47(2):116-140
Date
Mar-2018
Language
English
Publication Type
Journal Article
Review
Keywords
Arctic Regions
China
Climate change
Environmental monitoring
Environmental Pollutants - analysis - chemistry - toxicity
Europe
Humans
India
Indian Ocean
Mercury - analysis - chemistry - toxicity
Abstract
We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.
Notes
Cites: Environ Microbiol Rep. 2014 Oct;6(5):441-7 PMID 25646534
Cites: Environ Sci Technol. 2009 Jul 1;43(13):4802-9 PMID 19673268
Cites: Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11789-94 PMID 26351688
Cites: Environ Sci Technol. 2012 Jun 5;46(11):5921-30 PMID 22519552
Cites: Environ Sci Pollut Res Int. 2017 Feb;24(5):5001-5011 PMID 28000068
Cites: Environ Sci Technol. 2013 Aug 6;47(15):8105-13 PMID 23834017
Cites: Science. 2013 Sep 27;341(6153):1457-8 PMID 24072910
Cites: Sci Total Environ. 2013 Mar 15;448:163-75 PMID 23062970
Cites: Environ Sci Technol. 2007 Jul 15;41(14):4851-60 PMID 17711193
Cites: Environ Sci Technol. 2011 Feb 1;45(3):964-70 PMID 21210676
Cites: Environ Sci Technol. 2010 Mar 1;44(5):1630-7 PMID 20104887
Cites: Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16114-9 PMID 19805267
Cites: Sci Total Environ. 2006 Aug 15;367(1):222-33 PMID 16406491
Cites: Science. 2013 Mar 15;339(6125):1332-5 PMID 23393089
Cites: Philos Trans A Math Phys Eng Sci. 2016 Nov 28;374(2081): PMID 29035262
Cites: Environ Sci Technol. 2016 Dec 6;50(23 ):12864-12873 PMID 27934281
Cites: Chem Rev. 2007 Feb;107(2):641-62 PMID 17300143
Cites: Environ Sci Technol. 2013 Oct 15;47(20):11810-20 PMID 24024607
Cites: Sci Total Environ. 2000 Oct 2;259(1-3):61-71 PMID 11032136
Cites: Environ Sci Technol. 2015 Jan 6;49(1):432-41 PMID 25485926
Cites: Nat Microbiol. 2016 Aug 01;1(10 ):16127 PMID 27670112
Cites: Sci Total Environ. 2015 Dec 15;538:896-904 PMID 26363145
Cites: Environ Sci Technol. 2017 Jun 6;51(11):5899-5906 PMID 28440654
Cites: Environ Sci Technol. 2010 Mar 1;44(5):1698-704 PMID 20121085
Cites: Appl Environ Microbiol. 2014 Oct;80(20):6517-26 PMID 25107983
Cites: Sci Total Environ. 2016 Oct 15;568:1157-70 PMID 27102272
Cites: Nature. 2017 Jul 12;547(7662):201-204 PMID 28703199
Cites: Environ Pollut. 2012 Feb;161:261-71 PMID 21745704
Cites: Environ Sci Technol. 2010 Jul 15;44(14):5371-6 PMID 20553021
Cites: Environ Sci Technol. 2012 May 1;46(9):4933-40 PMID 22500567
Cites: Environ Sci Technol. 2017 Mar 7;51(5):2846-2853 PMID 28191932
Cites: Environ Sci Technol. 2012 Aug 7;46(15):7963-70 PMID 22747193
Cites: Environ Sci Technol. 2014 Feb 18;48(4):2242-52 PMID 24428735
Cites: Appl Environ Microbiol. 2013 Oct;79(20):6325-30 PMID 23934484
Cites: Environ Sci Technol. 2014 Oct 7;48(19):11437-44 PMID 25192054
Cites: Sci Total Environ. 2016 Oct 15;568:546-56 PMID 26803218
Cites: Environ Sci Technol. 2017 Feb 7;51(3):1186-1194 PMID 28013537
Cites: Sci Total Environ. 2016 Oct 15;568:578-86 PMID 26897612
Cites: Environ Sci Technol. 2015 Aug 4;49(15):8977-85 PMID 26132925
Cites: Environ Sci Technol. 2004 Mar 15;38(6):1772-6 PMID 15074688
Cites: Environ Toxicol Chem. 2014 Jan;33(1):208-15 PMID 24302165
Cites: Environ Sci Technol. 2016 Sep 6;50(17 ):9232-41 PMID 27501307
Cites: Science. 2006 Aug 18;313(5789):940-3 PMID 16825536
Cites: Water Res. 2015 Sep 1;80:245-55 PMID 26005785
Cites: Environ Sci Technol. 2013 Mar 19;47(6):2441-56 PMID 23384298
Cites: Environ Sci Technol. 2014 Aug 19;48(16):9514-22 PMID 25066365
Cites: Environ Sci Technol. 2015 Apr 7;49(7):4036-47 PMID 25750991
Cites: Sci Total Environ. 2013 Feb 15;445-446:126-35 PMID 23333508
Cites: Sci Total Environ. 2016 Oct 15;568:522-35 PMID 26775833
Cites: Sci Total Environ. 2014 Jul 15;487:299-312 PMID 24793327
Cites: Nature. 2014 Aug 7;512(7512):65-8 PMID 25100482
Cites: Environ Sci Technol. 2010 Nov 15;44(22):8574-80 PMID 20973542
Cites: Sci Adv. 2015 Oct 09;1(9):e1500675 PMID 26601305
Cites: Environ Sci Technol. 2007 Dec 1;41(23):8092-8 PMID 18186342
Cites: Sci Rep. 2015 May 20;5:10318 PMID 25993348
Cites: Environ Toxicol Chem. 2014 Jun;33(6):1202-10 PMID 24038450
Cites: Ecotoxicology. 2015 Mar;24(2):453-67 PMID 25492585
Cites: Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16586-91 PMID 17901207
Cites: Sci Total Environ. 2016 Oct 15;568:727-38 PMID 27130329
Cites: Environ Pollut. 2013 Nov;182:127-34 PMID 23911621
Cites: Chemosphere. 2017 Jul;178:42-50 PMID 28319740
Cites: Environ Pollut. 2012 Feb;161:284-90 PMID 21715069
Cites: Atmos Chem Phys. 2008 Dec 22;8(24):null PMID 24348525
Cites: Environ Toxicol Chem. 2009 Apr;28(4):881-93 PMID 19391686
Cites: Environ Sci Technol. 2011 Dec 15;45(24):10485-91 PMID 22070723
Cites: Environ Sci Technol. 2015 May 5;49(9):5326-35 PMID 25851589
Cites: Environ Sci Technol. 2009 Aug 15;43(16):6235-41 PMID 19746719
Cites: PLoS One. 2015 Sep 15;10(9):e0138333 PMID 26371471
Cites: Environ Sci Technol. 2002 Dec 1;36(23):5034-40 PMID 12523417
Cites: Environ Sci Technol. 2015 Jul 7;49(13):7743-53 PMID 26030209
Cites: Environ Pollut. 2009 Feb;157(2):592-600 PMID 18922608
Cites: Sci Total Environ. 2009 Oct 15;407(21):5578-88 PMID 19646736
Cites: Environ Sci Technol. 2014 Mar 18;48(6):3153-61 PMID 24524696
Cites: Sci Total Environ. 2000 Oct 9;260(1-3):213-23 PMID 11032129
Cites: Sci Total Environ. 2013 May 1;452-453:196-207 PMID 23506852
Cites: Environ Sci Technol. 2005 Jan 15;39(2):557-68 PMID 15707056
Cites: Environ Sci Technol. 2014 Jul 1;48(13):7204-6 PMID 24940613
Cites: Environ Sci Technol. 2015 Jun 16;49(12):7188-96 PMID 25946594
Cites: Environ Sci Technol. 2013 Jun 4;47(11):5746-54 PMID 23634978
Cites: Sci Total Environ. 2015 Mar 15;509-510:16-27 PMID 25604938
Cites: Environ Sci Technol. 2010 Jun 1;44(11):4191-7 PMID 20443581
Cites: Environ Sci Technol. 2012 Aug 21;46(16):8748-55 PMID 22839429
Cites: Int J Environ Res Public Health. 2015 Sep 10;12(9):11254-68 PMID 26378551
Cites: Mar Chem. 2015 Dec 20;177(Pt 5):753-762 PMID 26644635
Cites: Chemosphere. 2000 Jun;40(12):1335-51 PMID 10789973
Cites: Water Air Soil Pollut. 2010 Oct;212(1-4):369-385 PMID 20936165
Cites: Environ Sci Technol. 2017 Jun 6;51(11):5969-5977 PMID 28448134
Cites: Appl Environ Microbiol. 2016 Sep 16;82(19):6068-78 PMID 27422835
Cites: Environ Sci Technol. 2014 Jun 17;48(12):6533-43 PMID 24819278
Cites: Environ Sci Technol. 2016 Sep 6;50(17 ):9262-9 PMID 27485289
Cites: Environ Sci Technol. 2012 Oct 16;46(20):10957-64 PMID 23033864
Cites: Environ Sci Technol. 2016 Nov 1;50(21):11559-11568 PMID 27690400
Cites: Environ Sci Technol. 2016 Oct 18;50(20):10943-10950 PMID 27649379
Cites: Environ Sci Technol. 2013 Jul 16;47(14):7757-65 PMID 23758558
Cites: Environ Sci Technol. 2015 May 5;49(9):5363-70 PMID 25822871
Cites: Environ Pollut. 2010 Oct;158(10):3347-53 PMID 20716469
Cites: Ambio. 2007 Feb;36(1):19-32 PMID 17408188
Cites: Sci Total Environ. 2012 Mar 1;419:136-43 PMID 22281042
Cites: Sci Total Environ. 2006 Aug 1;366(2-3):851-63 PMID 16181661
Cites: Environ Sci Technol. 2014 Oct 7;48(19):11312-9 PMID 25171182
Cites: Environ Health Perspect. 2007 Feb;115(2):235-42 PMID 17384771
Cites: Environ Sci Technol. 2015 Jun 2;49(11):6712-21 PMID 25923446
Cites: Environ Sci Technol. 2012 Jan 3;46(1):382-90 PMID 22103560
Cites: Sci Total Environ. 2014 Oct 1;494-495:337-50 PMID 25068706
Cites: Environ Sci Technol. 2017 Jan 17;51(2):801-809 PMID 27951639
Cites: Ecotoxicology. 2005 Mar;14(1-2):85-99 PMID 15931960
Cites: Environ Sci Technol. 2016 Mar 1;50(5):2405-12 PMID 26849121
Cites: Sci Total Environ. 2012 Jan 1;414:22-42 PMID 22104383
Cites: Sci Total Environ. 2011 Jan 1;409(3):548-63 PMID 21094516
Cites: Sci Total Environ. 2015 Nov 1;532:220-9 PMID 26071963
Cites: Environ Sci Process Impacts. 2017 Oct 18;19(10 ):1235-1248 PMID 28825440
Cites: Environ Sci Technol. 2009 Apr 15;43(8):2983-8 PMID 19475981
Cites: Environ Sci Technol. 2016 Jan 19;50(2):507-24 PMID 26599393
Cites: Environ Sci Technol. 2016 Aug 16;50(16):8548-57 PMID 27418119
Cites: Environ Sci Technol. 2011 May 1;45(9):3974-81 PMID 21473582
Cites: Int J Environ Res Public Health. 2017 Feb 01;14 (2): PMID 28157152
Cites: Environ Sci Technol. 2017 Jan 17;51(2):863-869 PMID 27960251
Cites: J Environ Qual. 2003 Mar-Apr;32(2):393-405 PMID 12708661
Cites: Sci Adv. 2017 Jan 27;3(1):e1601239 PMID 28138547
Cites: Environ Sci Technol. 2013 May 7;47(9):4181-8 PMID 23597056
Cites: Phys Chem Chem Phys. 2017 Jan 18;19(3):1826-1838 PMID 28000816
Cites: J Mar Biol Assoc U.K.. 2016 Feb;96(1):43-59 PMID 26834292
Cites: Environ Sci Technol. 2014 Sep 2;48(17):10242-50 PMID 25127072
Cites: Anal Bioanal Chem. 2007 May;388(2):353-9 PMID 17375289
Cites: Sci Total Environ. 2016 Oct 15;568:651-65 PMID 26936663
Cites: Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):526-31 PMID 26729866
Cites: Sci Total Environ. 2008 Oct 1;404(1):129-38 PMID 18640702
Cites: Sci Rep. 2013 Nov 25;3:3322 PMID 24270081
Cites: Environ Pollut. 2012 Dec;171:109-17 PMID 22892573
Cites: Environ Sci Technol. 2015 Mar 3;49(5):3185-94 PMID 25655106
Cites: Science. 2007 Oct 19;318(5849):417-20 PMID 17872409
Cites: Environ Sci Technol. 2010 Oct 15;44(20):7764-70 PMID 20853890
Cites: Nat Commun. 2014 Aug 20;5:4624 PMID 25140406
Cites: Environ Sci Technol. 2014 Mar 18;48(6):3162-8 PMID 24524759
PubMed ID
29388126 View in PubMed
Less detail

A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

https://arctichealth.org/en/permalink/ahliterature289393
Source
Ambio. 2018 Mar; 47(2):116-140
Publication Type
Journal Article
Date
Mar-2018
Author
Daniel Obrist
Jane L Kirk
Lei Zhang
Elsie M Sunderland
Martin Jiskra
Noelle E Selin
Author Affiliation
Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, One University Ave, Lowell, MA, 01854, USA. daniel_obrist@uml.edu.
Source
Ambio. 2018 Mar; 47(2):116-140
Date
Mar-2018
Language
English
Publication Type
Journal Article
Abstract
We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.
Notes
Cites: Environ Microbiol Rep. 2014 Oct;6(5):441-7 PMID 25646534
Cites: Environ Sci Technol. 2009 Jul 1;43(13):4802-9 PMID 19673268
Cites: Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11789-94 PMID 26351688
Cites: Environ Sci Technol. 2012 Jun 5;46(11):5921-30 PMID 22519552
Cites: Environ Sci Pollut Res Int. 2017 Feb;24(5):5001-5011 PMID 28000068
Cites: Environ Sci Technol. 2013 Aug 6;47(15):8105-13 PMID 23834017
Cites: Science. 2013 Sep 27;341(6153):1457-8 PMID 24072910
Cites: Sci Total Environ. 2013 Mar 15;448:163-75 PMID 23062970
Cites: Environ Sci Technol. 2007 Jul 15;41(14):4851-60 PMID 17711193
Cites: Environ Sci Technol. 2011 Feb 1;45(3):964-70 PMID 21210676
Cites: Environ Sci Technol. 2010 Mar 1;44(5):1630-7 PMID 20104887
Cites: Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16114-9 PMID 19805267
Cites: Sci Total Environ. 2006 Aug 15;367(1):222-33 PMID 16406491
Cites: Science. 2013 Mar 15;339(6125):1332-5 PMID 23393089
Cites: Philos Trans A Math Phys Eng Sci. 2016 Nov 28;374(2081): PMID 29035262
Cites: Environ Sci Technol. 2016 Dec 6;50(23 ):12864-12873 PMID 27934281
Cites: Chem Rev. 2007 Feb;107(2):641-62 PMID 17300143
Cites: Environ Sci Technol. 2013 Oct 15;47(20):11810-20 PMID 24024607
Cites: Sci Total Environ. 2000 Oct 2;259(1-3):61-71 PMID 11032136
Cites: Environ Sci Technol. 2015 Jan 6;49(1):432-41 PMID 25485926
Cites: Nat Microbiol. 2016 Aug 01;1(10 ):16127 PMID 27670112
Cites: Sci Total Environ. 2015 Dec 15;538:896-904 PMID 26363145
Cites: Environ Sci Technol. 2017 Jun 6;51(11):5899-5906 PMID 28440654
Cites: Environ Sci Technol. 2010 Mar 1;44(5):1698-704 PMID 20121085
Cites: Appl Environ Microbiol. 2014 Oct;80(20):6517-26 PMID 25107983
Cites: Sci Total Environ. 2016 Oct 15;568:1157-70 PMID 27102272
Cites: Nature. 2017 Jul 12;547(7662):201-204 PMID 28703199
Cites: Environ Pollut. 2012 Feb;161:261-71 PMID 21745704
Cites: Environ Sci Technol. 2010 Jul 15;44(14):5371-6 PMID 20553021
Cites: Environ Sci Technol. 2012 May 1;46(9):4933-40 PMID 22500567
Cites: Environ Sci Technol. 2017 Mar 7;51(5):2846-2853 PMID 28191932
Cites: Environ Sci Technol. 2012 Aug 7;46(15):7963-70 PMID 22747193
Cites: Environ Sci Technol. 2014 Feb 18;48(4):2242-52 PMID 24428735
Cites: Appl Environ Microbiol. 2013 Oct;79(20):6325-30 PMID 23934484
Cites: Environ Sci Technol. 2014 Oct 7;48(19):11437-44 PMID 25192054
Cites: Sci Total Environ. 2016 Oct 15;568:546-56 PMID 26803218
Cites: Environ Sci Technol. 2017 Feb 7;51(3):1186-1194 PMID 28013537
Cites: Sci Total Environ. 2016 Oct 15;568:578-86 PMID 26897612
Cites: Environ Sci Technol. 2015 Aug 4;49(15):8977-85 PMID 26132925
Cites: Environ Sci Technol. 2004 Mar 15;38(6):1772-6 PMID 15074688
Cites: Environ Toxicol Chem. 2014 Jan;33(1):208-15 PMID 24302165
Cites: Environ Sci Technol. 2016 Sep 6;50(17 ):9232-41 PMID 27501307
Cites: Science. 2006 Aug 18;313(5789):940-3 PMID 16825536
Cites: Water Res. 2015 Sep 1;80:245-55 PMID 26005785
Cites: Environ Sci Technol. 2013 Mar 19;47(6):2441-56 PMID 23384298
Cites: Environ Sci Technol. 2014 Aug 19;48(16):9514-22 PMID 25066365
Cites: Environ Sci Technol. 2015 Apr 7;49(7):4036-47 PMID 25750991
Cites: Sci Total Environ. 2013 Feb 15;445-446:126-35 PMID 23333508
Cites: Sci Total Environ. 2016 Oct 15;568:522-35 PMID 26775833
Cites: Sci Total Environ. 2014 Jul 15;487:299-312 PMID 24793327
Cites: Nature. 2014 Aug 7;512(7512):65-8 PMID 25100482
Cites: Environ Sci Technol. 2010 Nov 15;44(22):8574-80 PMID 20973542
Cites: Sci Adv. 2015 Oct 09;1(9):e1500675 PMID 26601305
Cites: Environ Sci Technol. 2007 Dec 1;41(23):8092-8 PMID 18186342
Cites: Sci Rep. 2015 May 20;5:10318 PMID 25993348
Cites: Environ Toxicol Chem. 2014 Jun;33(6):1202-10 PMID 24038450
Cites: Ecotoxicology. 2015 Mar;24(2):453-67 PMID 25492585
Cites: Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16586-91 PMID 17901207
Cites: Sci Total Environ. 2016 Oct 15;568:727-38 PMID 27130329
Cites: Environ Pollut. 2013 Nov;182:127-34 PMID 23911621
Cites: Chemosphere. 2017 Jul;178:42-50 PMID 28319740
Cites: Environ Pollut. 2012 Feb;161:284-90 PMID 21715069
Cites: Atmos Chem Phys. 2008 Dec 22;8(24):null PMID 24348525
Cites: Environ Toxicol Chem. 2009 Apr;28(4):881-93 PMID 19391686
Cites: Environ Sci Technol. 2011 Dec 15;45(24):10485-91 PMID 22070723
Cites: Environ Sci Technol. 2015 May 5;49(9):5326-35 PMID 25851589
Cites: Environ Sci Technol. 2009 Aug 15;43(16):6235-41 PMID 19746719
Cites: PLoS One. 2015 Sep 15;10(9):e0138333 PMID 26371471
Cites: Environ Sci Technol. 2002 Dec 1;36(23):5034-40 PMID 12523417
Cites: Environ Sci Technol. 2015 Jul 7;49(13):7743-53 PMID 26030209
Cites: Environ Pollut. 2009 Feb;157(2):592-600 PMID 18922608
Cites: Sci Total Environ. 2009 Oct 15;407(21):5578-88 PMID 19646736
Cites: Environ Sci Technol. 2014 Mar 18;48(6):3153-61 PMID 24524696
Cites: Sci Total Environ. 2000 Oct 9;260(1-3):213-23 PMID 11032129
Cites: Sci Total Environ. 2013 May 1;452-453:196-207 PMID 23506852
Cites: Environ Sci Technol. 2005 Jan 15;39(2):557-68 PMID 15707056
Cites: Environ Sci Technol. 2014 Jul 1;48(13):7204-6 PMID 24940613
Cites: Environ Sci Technol. 2015 Jun 16;49(12):7188-96 PMID 25946594
Cites: Environ Sci Technol. 2013 Jun 4;47(11):5746-54 PMID 23634978
Cites: Sci Total Environ. 2015 Mar 15;509-510:16-27 PMID 25604938
Cites: Environ Sci Technol. 2010 Jun 1;44(11):4191-7 PMID 20443581
Cites: Environ Sci Technol. 2012 Aug 21;46(16):8748-55 PMID 22839429
Cites: Int J Environ Res Public Health. 2015 Sep 10;12(9):11254-68 PMID 26378551
Cites: Mar Chem. 2015 Dec 20;177(Pt 5):753-762 PMID 26644635
Cites: Chemosphere. 2000 Jun;40(12):1335-51 PMID 10789973
Cites: Water Air Soil Pollut. 2010 Oct;212(1-4):369-385 PMID 20936165
Cites: Environ Sci Technol. 2017 Jun 6;51(11):5969-5977 PMID 28448134
Cites: Appl Environ Microbiol. 2016 Sep 16;82(19):6068-78 PMID 27422835
Cites: Environ Sci Technol. 2014 Jun 17;48(12):6533-43 PMID 24819278
Cites: Environ Sci Technol. 2016 Sep 6;50(17 ):9262-9 PMID 27485289
Cites: Environ Sci Technol. 2012 Oct 16;46(20):10957-64 PMID 23033864
Cites: Environ Sci Technol. 2016 Nov 1;50(21):11559-11568 PMID 27690400
Cites: Environ Sci Technol. 2016 Oct 18;50(20):10943-10950 PMID 27649379
Cites: Environ Sci Technol. 2013 Jul 16;47(14):7757-65 PMID 23758558
Cites: Environ Sci Technol. 2015 May 5;49(9):5363-70 PMID 25822871
Cites: Environ Pollut. 2010 Oct;158(10):3347-53 PMID 20716469
Cites: Ambio. 2007 Feb;36(1):19-32 PMID 17408188
Cites: Sci Total Environ. 2012 Mar 1;419:136-43 PMID 22281042
Cites: Sci Total Environ. 2006 Aug 1;366(2-3):851-63 PMID 16181661
Cites: Environ Sci Technol. 2014 Oct 7;48(19):11312-9 PMID 25171182
Cites: Environ Health Perspect. 2007 Feb;115(2):235-42 PMID 17384771
Cites: Environ Sci Technol. 2015 Jun 2;49(11):6712-21 PMID 25923446
Cites: Environ Sci Technol. 2012 Jan 3;46(1):382-90 PMID 22103560
Cites: Sci Total Environ. 2014 Oct 1;494-495:337-50 PMID 25068706
Cites: Environ Sci Technol. 2017 Jan 17;51(2):801-809 PMID 27951639
Cites: Ecotoxicology. 2005 Mar;14(1-2):85-99 PMID 15931960
Cites: Environ Sci Technol. 2016 Mar 1;50(5):2405-12 PMID 26849121
Cites: Sci Total Environ. 2012 Jan 1;414:22-42 PMID 22104383
Cites: Sci Total Environ. 2011 Jan 1;409(3):548-63 PMID 21094516
Cites: Sci Total Environ. 2015 Nov 1;532:220-9 PMID 26071963
Cites: Environ Sci Process Impacts. 2017 Oct 18;19(10 ):1235-1248 PMID 28825440
Cites: Environ Sci Technol. 2009 Apr 15;43(8):2983-8 PMID 19475981
Cites: Environ Sci Technol. 2016 Jan 19;50(2):507-24 PMID 26599393
Cites: Environ Sci Technol. 2016 Aug 16;50(16):8548-57 PMID 27418119
Cites: Environ Sci Technol. 2011 May 1;45(9):3974-81 PMID 21473582
Cites: Int J Environ Res Public Health. 2017 Feb 01;14 (2): PMID 28157152
Cites: Environ Sci Technol. 2017 Jan 17;51(2):863-869 PMID 27960251
Cites: J Environ Qual. 2003 Mar-Apr;32(2):393-405 PMID 12708661
Cites: Sci Adv. 2017 Jan 27;3(1):e1601239 PMID 28138547
Cites: Environ Sci Technol. 2013 May 7;47(9):4181-8 PMID 23597056
Cites: Phys Chem Chem Phys. 2017 Jan 18;19(3):1826-1838 PMID 28000816
Cites: J Mar Biol Assoc U.K.. 2016 Feb;96(1):43-59 PMID 26834292
Cites: Environ Sci Technol. 2014 Sep 2;48(17):10242-50 PMID 25127072
Cites: Anal Bioanal Chem. 2007 May;388(2):353-9 PMID 17375289
Cites: Sci Total Environ. 2016 Oct 15;568:651-65 PMID 26936663
Cites: Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):526-31 PMID 26729866
Cites: Sci Total Environ. 2008 Oct 1;404(1):129-38 PMID 18640702
Cites: Sci Rep. 2013 Nov 25;3:3322 PMID 24270081
Cites: Environ Pollut. 2012 Dec;171:109-17 PMID 22892573
Cites: Environ Sci Technol. 2015 Mar 3;49(5):3185-94 PMID 25655106
Cites: Science. 2007 Oct 19;318(5849):417-20 PMID 17872409
Cites: Environ Sci Technol. 2010 Oct 15;44(20):7764-70 PMID 20853890
Cites: Nat Commun. 2014 Aug 20;5:4624 PMID 25140406
Cites: Environ Sci Technol. 2014 Mar 18;48(6):3162-8 PMID 24524759
PubMed ID
29388126 View in PubMed
Less detail

Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

https://arctichealth.org/en/permalink/ahliterature289911
Source
Environ Sci Process Impacts. 2017 Oct 18; 19(10):1235-1248
Publication Type
Journal Article
Date
Oct-18-2017
Author
Martin Jiskra
Jan G Wiederhold
Ulf Skyllberg
Rose-Marie Kronberg
Ruben Kretzschmar
Author Affiliation
Soil Chemistry, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CHN, CH-8092 Zurich, Switzerland. martin.jiskra@gmail.com.
Source
Environ Sci Process Impacts. 2017 Oct 18; 19(10):1235-1248
Date
Oct-18-2017
Language
English
Publication Type
Journal Article
Keywords
Chemical Fractionation
Ecosystem
Environmental Monitoring - methods
Environmental Pollutants - analysis - chemistry
Humic Substances - analysis
Mercury - analysis - chemistry
Mercury Isotopes - analysis
Rivers - chemistry
Soil - chemistry
Sweden
Taiga
Abstract
Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (?199Hg and ?200Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg0) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg?:?C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.
PubMed ID
28825440 View in PubMed
Less detail

Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

https://arctichealth.org/en/permalink/ahliterature283905
Source
Nature. 2017 Jul 12;547(7662):201-204
Publication Type
Article
Date
Jul-12-2017
Author
Daniel Obrist
Yannick Agnan
Martin Jiskra
Christine L Olson
Dominique P Colegrove
Jacques Hueber
Christopher W Moore
Jeroen E Sonke
Detlev Helmig
Source
Nature. 2017 Jul 12;547(7662):201-204
Date
Jul-12-2017
Language
English
Publication Type
Article
Abstract
Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.
PubMed ID
28703199 View in PubMed
Less detail

7 records – page 1 of 1.