Skip header and navigation

3 records – page 1 of 1.

Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris).

https://arctichealth.org/en/permalink/ahliterature266632
Source
Mol Ecol. 2015 Jul;24(14):3688-705
Publication Type
Article
Date
Jul-2015
Author
Hayley C Lanier
Rob Massatti
Qixin He
Link E Olson
L Lacey Knowles
Source
Mol Ecol. 2015 Jul;24(14):3688-705
Date
Jul-2015
Language
English
Publication Type
Article
Keywords
Alaska
Animals
Biological Evolution
Canada
Ecosystem
Gene Flow
Genetics, Population
Lagomorpha - genetics
Likelihood Functions
Models, Genetic
Phylogeography
Polymorphism, Single Nucleotide
Population Density
Sequence Analysis, DNA
Abstract
Identifying the genetic structure of a species and the factors that drive it is an important first step in modern population management, in part because populations evolving from separate ancestral sources may possess potentially different characteristics. This is especially true for climate-sensitive species such as pikas, where the delimitation of distinct genetic units and the characterization of population responses to contemporary and historical environmental pressures are of particular interest. We combined a restriction site-associated DNA sequencing (RADSeq) data set containing 4156 single nucleotide polymorphisms with ecological niche models (ENMs) of present and past habitat suitability to characterize population composition and evaluate the effects of historical range shifts, contemporary climates and landscape factors on gene flow in Collared Pikas, which are found in Alaska and adjacent regions of northwestern Canada and are the lesser-studied of North America's two pika species. The results suggest that contemporary environmental factors contribute little to current population connectivity. Instead, genetic diversity is strongly shaped by the presence of three ancestral lineages isolated during the Pleistocene (~148 and 52 kya). Based on ENMs and genetic data, populations originating from a northern refugium experienced longer-term stability, whereas both southern lineages underwent population expansion - contradicting the southern stability and northern expansion patterns seen in many other taxa. Current populations are comparable with respect to generally low diversity within populations and little-to-no recent admixture. The predominance of divergent histories structuring populations implies that if we are to understand and manage pika populations, we must specifically assess and accurately account for the forces underlying genetic similarity.
PubMed ID
26096099 View in PubMed
Less detail

Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.

https://arctichealth.org/en/permalink/ahliterature260901
Source
PLoS One. 2015;10(3):e0118396
Publication Type
Article
Date
2015
Author
Hayley C Lanier
Aren M Gunderson
Marcelo Weksler
Vadim B Fedorov
Link E Olson
Source
PLoS One. 2015;10(3):e0118396
Date
2015
Language
English
Publication Type
Article
Abstract
Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of biodiversity.
Notes
Cites: Mol Ecol. 2013 Feb;22(4):925-4623279006
Cites: Mol Ecol. 2014 Apr;23(8):2060-7124661631
Cites: Syst Biol. 2004 Oct;53(5):793-80815545256
Cites: Am Nat. 2005 Jun;165(6):E168-8515937741
Cites: Mol Ecol. 2005 Aug;14(9):2739-5316029475
Cites: Mol Ecol. 2006 Jan;15(1):209-2316367841
Cites: Mol Ecol. 2006 Sep;15(10):2809-1916911202
Cites: Genetics. 2006 Nov;174(3):1431-916951063
Cites: BMC Bioinformatics. 2007;8:26817655753
Cites: BMC Evol Biol. 2007;7:21417996036
Cites: Mol Biol Evol. 2008 Jul;25(7):1253-618397919
Cites: Trends Ecol Evol. 2008 Oct;23(10):564-7118722689
Cites: Bioinformatics. 2009 Jun 1;25(11):1451-219346325
Cites: Mol Phylogenet Evol. 2009 Oct;53(1):1-1219501176
Cites: Evolution. 2009 Nov;63(11):2848-6319663994
Cites: Mol Phylogenet Evol. 2010 Jan;54(1):291-30119755165
Cites: J Evol Biol. 2009 Dec;22(12):2363-7519888939
Cites: Proc Biol Sci. 2010 Mar 7;277(1682):661-7119864280
Cites: Mol Ecol. 2010 Nov;19(21):4589-62120849561
Cites: Evolution. 2011 Jan;65(1):125-3820731714
Cites: Mol Ecol. 2011 Feb;20(3):573-8321199027
Cites: Evolution. 2011 Jul;65(7):1879-9621729045
Cites: Proc Biol Sci. 2012 Jan 22;279(1727):371-821676975
Cites: Nature. 2000 Jun 22;405(6789):907-1310879524
Cites: Genetics. 2000 Jul;155(3):1405-1310880498
Cites: Mol Ecol. 2001 Mar;10(3):537-4911298967
Cites: Mol Ecol. 2002 Apr;11(4):795-80711972765
Cites: Syst Biol. 1999 Dec;48(4):715-3412066297
Cites: Proc Biol Sci. 2002 Oct 22;269(1505):2071-712396480
Cites: Mol Ecol. 2003 Mar;12(3):725-3112675827
Cites: Science. 2003 Jun 6;300(5625):1563-512791991
Cites: Evolution. 2003 Jul;57(7):1610-2112940365
Cites: Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10331-412913123
Cites: Syst Biol. 2003 Oct;52(5):696-70414530136
Cites: Nature. 2003 Nov 13;426(6963):169-7114614503
Cites: Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):183-95; discussion 19515101575
Cites: Mol Phylogenet Evol. 2004 Jun;31(3):1015-3015120398
Cites: PLoS Biol. 2004 Oct;2(10):e29015361933
Cites: Genetics. 1989 Nov;123(3):585-952513255
Cites: Genet Res. 1992 Apr;59(2):139-471628818
Cites: Genetics. 1996 Jul;143(3):1457-658807315
Cites: Genetics. 1997 Oct;147(2):915-259335623
Cites: Mol Phylogenet Evol. 2004 Dec;33(3):647-6315522793
PubMed ID
25734275 View in PubMed
Less detail

Novel Orthopoxvirus Infection in an Alaska Resident.

https://arctichealth.org/en/permalink/ahliterature289944
Source
Clin Infect Dis. 2017 Jun 15; 64(12):1737-1741
Publication Type
Case Reports
Journal Article
Date
Jun-15-2017
Author
Yuri P Springer
Christopher H Hsu
Zachary R Werle
Link E Olson
Michael P Cooper
Louisa J Castrodale
Nisha Fowler
Andrea M McCollum
Cynthia S Goldsmith
Ginny L Emerson
Kimberly Wilkins
Jeffrey B Doty
Jillybeth Burgado
JinXin Gao
Nishi Patel
Matthew R Mauldin
Mary G Reynolds
Panayampalli S Satheshkumar
Whitni Davidson
Yu Li
Joseph B McLaughlin
Author Affiliation
Alaska Division of Public Health, Section of Epidemiology, Anchorage.
Source
Clin Infect Dis. 2017 Jun 15; 64(12):1737-1741
Date
Jun-15-2017
Language
English
Publication Type
Case Reports
Journal Article
Keywords
Alaska
Animals
Antibodies, Viral - blood
DNA, Viral - blood
Female
Fomites - virology
Humans
Mammals - virology
Microscopy, Electron
Middle Aged
Orthopoxvirus - classification - genetics - isolation & purification - ultrastructure
Phylogeny
Poxviridae Infections - diagnosis - virology
Sequence Analysis, DNA
Skin - pathology - virology
Abstract
Human infection by orthopoxviruses is being reported with increasing frequency, attributed in part to the cessation of smallpox vaccination and concomitant waning of population-level immunity. In July 2015, a female resident of interior Alaska presented to an urgent care clinic with a dermal lesion consistent with poxvirus infection. Laboratory testing of a virus isolated from the lesion confirmed infection by an Orthopoxvirus.
The virus isolate was characterized by using electron microscopy and nucleic acid sequencing. An epidemiologic investigation that included patient interviews, contact tracing, and serum testing, as well as environmental and small-mammal sampling, was conducted to identify the infection source and possible additional cases.
Neither signs of active infection nor evidence of recent prior infection were observed in any of the 4 patient contacts identified. The patient's infection source was not definitively identified. Potential routes of exposure included imported fomites from Azerbaijan via the patient's cohabiting partner or wild small mammals in or around the patient's residence. Phylogenetic analyses demonstrated that the virus represents a distinct and previously undescribed genetic lineage of Orthopoxvirus, which is most closely related to the Old World orthopoxviruses.
Investigation findings point to infection of the patient after exposure in or near Fairbanks. This conclusion raises questions about the geographic origins (Old World vs North American) of the genus Orthopoxvirus. Clinicians should remain vigilant for signs of poxvirus infection and alert public health officials when cases are suspected.
Notes
Cites: Clin Diagn Lab Immunol. 2005 Jul;12(7):867-72 PMID 16002637
Cites: J Gen Virol. 2015 Feb;96(Pt 2):390-4 PMID 25319753
Cites: Vector Borne Zoonotic Dis. 2015 May;15(5):317-22 PMID 25988441
Cites: Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16262-7 PMID 20805472
Cites: Emerg Infect Dis. 2003 Nov;9(11):1458-61 PMID 14718092
Cites: Am J Trop Med Hyg. 2015 Aug;93(2):410-5 PMID 26013374
Cites: Lett Appl Microbiol. 2013 Nov;57(5):399-404 PMID 23815079
Cites: J Parasitol. 1952 Oct;38(5):415-44 PMID 12991136
Cites: Clin Infect Dis. 2015 Nov 15;61(10):1543-8 PMID 26243783
Cites: Acta Virol. 1989 Jan;33(1):91 PMID 2565681
Cites: PLoS One. 2009 Oct 19;4(10):e7428 PMID 19838293
Cites: Virology. 2014 Mar;452-453:59-66 PMID 24606683
Cites: J Clin Virol. 2006 Jul;36(3):194-203 PMID 16731033
Cites: Proc Biol Sci. 1999 Oct 7;266(1432):1939-45 PMID 10584336
Cites: J Wildl Dis. 1987 Jan;23(1):77-85 PMID 3029442
Cites: J Virol. 1996 Jul;70(7):4210-9 PMID 8676441
Cites: Am J Trop Med Hyg. 2010 Apr;82(4):746-54 PMID 20348530
Cites: J Virol. 2015 Nov;89(21):10959-69 PMID 26311891
Cites: Vet Rec. 2005 Jan 1;156(1):7-13 PMID 15658561
Cites: N Engl J Med. 2015 Mar 26;372(13):1223-30 PMID 25806914
Cites: Lancet. 2012 Jan 7;379(9810):10-2 PMID 21601271
Cites: J Wildl Dis. 1983 Oct;19(4):324-9 PMID 6139490
Cites: Infect Genet Evol. 2012 Dec;12 (8):1597-604 PMID 22878096
Cites: Vector Borne Zoonotic Dis. 2011 Aug;11(8):1133-40 PMID 21453121
Cites: Clin Infect Dis. 2015 Jan 15;60(2):195-202 PMID 25301210
Cites: PLoS One. 2009 Oct 29;4(10):e7666 PMID 19865479
Cites: Lancet Infect Dis. 2004 Jan;4(1):15-25 PMID 14720564
Cites: J Clin Microbiol. 2015 Apr;53(4):1406-10 PMID 25673790
Cites: Clin Infect Dis. 2014 Jan;58(2):260-7 PMID 24158414
Cites: J Wildl Dis. 1998 Apr;34(2):240-50 PMID 9577770
Cites: Am J Trop Med Hyg. 2007 Dec;77(6):1150-6 PMID 18165539
Cites: Vector Borne Zoonotic Dis. 2014 Apr;14(4):278-83 PMID 24689532
Cites: PLoS Pathog. 2013;9(12):e1003756 PMID 24339772
PubMed ID
28329402 View in PubMed
Less detail