Skip header and navigation

Refine By

7 records – page 1 of 1.

Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis.

https://arctichealth.org/en/permalink/ahliterature271296
Source
PLoS Med. 2015 Aug;12(8):e1001865
Publication Type
Article
Date
Aug-2015
Author
Ge Zhang
Jonas Bacelis
Candice Lengyel
Kari Teramo
Mikko Hallman
Øyvind Helgeland
Stefan Johansson
Ronny Myhre
Verena Sengpiel
Pål Rasmus Njølstad
Bo Jacobsson
Louis Muglia
Source
PLoS Med. 2015 Aug;12(8):e1001865
Date
Aug-2015
Language
English
Publication Type
Article
Keywords
Body Height
Body Weight
Causality
Denmark
Female
Finland
Gestational Age
Haplotypes
Humans
Infant, Newborn
Mendelian Randomization Analysis
Mothers
Norway
Phenotype
Polymorphism, Single Nucleotide
Pregnancy
Abstract
Observational epidemiological studies indicate that maternal height is associated with gestational age at birth and fetal growth measures (i.e., shorter mothers deliver infants at earlier gestational ages with lower birth weight and birth length). Different mechanisms have been postulated to explain these associations. This study aimed to investigate the casual relationships behind the strong association of maternal height with fetal growth measures (i.e., birth length and birth weight) and gestational age by a Mendelian randomization approach.
We conducted a Mendelian randomization analysis using phenotype and genome-wide single nucleotide polymorphism (SNP) data of 3,485 mother/infant pairs from birth cohorts collected from three Nordic countries (Finland, Denmark, and Norway). We constructed a genetic score based on 697 SNPs known to be associated with adult height to index maternal height. To avoid confounding due to genetic sharing between mother and infant, we inferred parental transmission of the height-associated SNPs and utilized the haplotype genetic score derived from nontransmitted alleles as a valid genetic instrument for maternal height. In observational analysis, maternal height was significantly associated with birth length (p = 6.31 ? 10-9), birth weight (p = 2.19 ? 10-15), and gestational age (p = 1.51 ? 10-7). Our parental-specific haplotype score association analysis revealed that birth length and birth weight were significantly associated with the maternal transmitted haplotype score as well as the paternal transmitted haplotype score. Their association with the maternal nontransmitted haplotype score was far less significant, indicating a major fetal genetic influence on these fetal growth measures. In contrast, gestational age was significantly associated with the nontransmitted haplotype score (p = 0.0424) and demonstrated a significant (p = 0.0234) causal effect of every 1 cm increase in maternal height resulting in ~0.4 more gestational d. Limitations of this study include potential influences in causal inference by biological pleiotropy, assortative mating, and the nonrandom sampling of study subjects.
Our results demonstrate that the observed association between maternal height and fetal growth measures (i.e., birth length and birth weight) is mainly defined by fetal genetics. In contrast, the association between maternal height and gestational age is more likely to be causal. In addition, our approach that utilizes the genetic score derived from the nontransmitted maternal haplotype as a genetic instrument is a novel extension to the Mendelian randomization methodology in casual inference between parental phenotype (or exposure) and outcomes in offspring.
Notes
Cites: PLoS Genet. 2013 Oct;9(10):e100391924204319
Cites: Paediatr Perinat Epidemiol. 2014 Jan;28(1):11-2224118026
Cites: Hum Mol Genet. 2014 Sep 15;23(R1):R89-9825064373
Cites: Behav Genet. 2014 Sep;44(5):445-5525060210
Cites: Lancet Diabetes Endocrinol. 2014 Oct;2(10):781-9225009082
Cites: Nat Genet. 2014 Nov;46(11):1173-8625282103
Cites: Am J Epidemiol. 2012 Feb 15;175(4):332-922247045
Cites: Nat Genet. 2012 Apr;44(4):369-75, S1-322426310
Cites: Br J Psychiatry. 2014 Nov;205(5):340-725368358
Cites: Bioinformatics. 2015 Mar 1;31(5):782-425338720
Cites: Am J Epidemiol. 2015 Jun 1;181(11):861-7325947956
Cites: Int J Obes Relat Metab Disord. 1999 Nov;23 Suppl 8:S1-10710641588
Cites: BJOG. 2000 Mar;107(3):375-8110740335
Cites: Scand J Public Health. 2001 Dec;29(4):300-711775787
Cites: Arch Dis Child. 2002 Sep;87(3):184-712193422
Cites: Int J Epidemiol. 2002 Dec;31(6):1235-912540728
Cites: Eur J Clin Nutr. 2003 Feb;57(2):266-7212571658
Cites: Int J Epidemiol. 2003 Feb;32(1):1-2212689998
Cites: Curr Diab Rep. 2001 Aug;1(1):71-712762960
Cites: J Reprod Med. 2003 Dec;48(12):963-814738024
Cites: Am J Obstet Gynecol. 1982 Sep 15;144(2):190-2007114129
Cites: Clin Genet. 1984 Nov;26(5):397-4056499253
Cites: Acta Obstet Gynecol Scand. 1995 Jan;74(1):15-87856427
Cites: Early Hum Dev. 1995 May 12;42(1):29-357671843
Cites: Br Med Bull. 1997 Jan;53(1):81-959158286
Cites: Am J Perinatol. 1998;15(9):545-89890253
Cites: Hypertension. 2004 Dec;44(6):838-4615520301
Cites: Early Hum Dev. 2005 Oct;81(10):823-3116085375
Cites: Am J Epidemiol. 2007 Feb 15;165(4):418-2417158475
Cites: Am J Epidemiol. 2007 Apr 1;165(7):734-4117311798
Cites: Biostatistics. 2007 Apr;8(2):485-9917189563
Cites: J Intern Med. 2007 May;261(5):412-717444880
Cites: Int J Epidemiol. 2007 Feb;36(1):104-716984935
Cites: J Pediatr. 2007 Jun;150(6):603-7, 607.e1-317517243
Cites: Stat Methods Med Res. 2007 Aug;16(4):309-3017715159
Cites: Arch Dis Child. 2007 Oct;92(10):876-8017595200
Cites: Pediatr Res. 2008 Jan;63(1):99-10218043501
Cites: Basic Clin Pharmacol Toxicol. 2008 Feb;102(2):245-5618226080
Cites: PLoS Med. 2008 Mar 11;5(3):e3318336062
Cites: JAMA. 2008 Dec 24;300(24):2886-9719109117
Cites: JAMA. 2009 Apr 22;301(16):1691-70119383960
Cites: Adv Exp Med Biol. 2009;646:1-1419536658
Cites: PLoS Genet. 2009 Jun;5(6):e100052919543373
Cites: Aust N Z J Obstet Gynaecol. 2009 Aug;49(4):388-9219694693
Cites: JAMA. 2010 Apr 21;303(15):1507-1620407060
Cites: BJOG. 2010 Sep;117(10):1248-5420618317
Cites: Nature. 2010 Oct 14;467(7317):832-820881960
Cites: PLoS Genet. 2011 Apr;7(4):e100136521533219
Cites: Am J Epidemiol. 2011 Jun 15;173(12):1392-40321555716
Cites: Int J Epidemiol. 2011 Jun;40(3):740-5220813862
Cites: Hum Mol Genet. 2011 Oct 15;20(20):4069-7521757498
Cites: PLoS One. 2011;6(12):e2947522216288
Cites: Nat Methods. 2012 Feb;9(2):179-8122138821
Cites: Curr Opin Clin Nutr Metab Care. 2012 May;15(3):258-6422406741
Cites: Stat Methods Med Res. 2012 Jun;21(3):223-4221216802
Cites: J Obstet Gynaecol Can. 2012 Aug;34(8):721-4622947405
Cites: Nature. 2012 Nov 1;491(7422):56-6523128226
Cites: PLoS One. 2012;7(12):e5121123251454
Cites: BMC Pregnancy Childbirth. 2013;13:3323383756
Cites: PLoS One. 2013;8(4):e6178123613933
Cites: Nat Rev Genet. 2013 Jul;14(7):483-9523752797
Cites: J Pediatr. 2013 Aug;163(2):549-5423477997
Cites: Nat Rev Genet. 2013 Sep;14(9):609-1723917626
Cites: Int J Epidemiol. 2013 Aug;42(4):1157-6323934314
Cites: Int J Epidemiol. 2013 Aug;42(4):1134-4424062299
PubMed ID
26284790 View in PubMed
Less detail

Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study.

https://arctichealth.org/en/permalink/ahliterature266313
Source
BMC Pregnancy Childbirth. 2014;14:375
Publication Type
Article
Date
2014
Author
Verena Sengpiel
Jonas Bacelis
Ronny Myhre
Solveig Myking
Aase Serine Devold Pay
Margaretha Haugen
Anne-Lise Brantsæter
Helle Margrete Meltzer
Roy Miodini Nilsen
Per Magnus
Stein Emil Vollset
Staffan Nilsson
Bo Jacobsson
Source
BMC Pregnancy Childbirth. 2014;14:375
Date
2014
Language
English
Publication Type
Article
Keywords
Adult
Diet
Dietary Supplements
Female
Folic Acid - administration & dosage - adverse effects
Gestational Age
Humans
Norway - epidemiology
Preconception Care
Pregnancy
Premature Birth - epidemiology - prevention & control
Proportional Hazards Models
Prospective Studies
Questionnaires
Risk assessment
Time Factors
Vitamin B Complex - administration & dosage - adverse effects
Young Adult
Abstract
Health authorities in numerous countries recommend periconceptional folic acid supplementation to prevent neural tube defects. The objective of this study was to examine the association of dietary folate intake and folic acid supplementation during different periods of pregnancy with the risk of spontaneous preterm delivery (PTD).
The Norwegian Mother and Child Cohort Study is a population-based prospective cohort study. A total of 66,014 women with singleton pregnancies resulting in live births in 2002-2009 were included. Folic acid supplementation was self-reported from 26 weeks before pregnancy until pregnancy week 24. At gestational week 22, the women completed a food frequency questionnaire, which allowed the calculation of their average total folate intake from foods and supplements for the first 4-5 months of pregnancy. Spontaneous PTD was defined as the spontaneous onset of delivery between weeks 22+0 and 36+6 (n = 1,755).
The median total folate intake was 313 µg/d (interquartile range IQR 167-558) in the overall population and 530 µg/d (IQR 355-636) in the supplement users. Eighty-five percent reported any folic acid supplementation from
Notes
Cites: Acta Obstet Gynecol Scand. 2000 Jun;79(6):435-910857866
Cites: N Engl J Med. 2002 Jan 24;346(4):282-411807155
Cites: Public Health Rep. 2004 Mar-Apr;119(2):170-315192904
Cites: Am J Perinatol. 2011 Dec;28(10):747-5221681695
Cites: Am J Obstet Gynecol. 2012 Feb;206(2):124.e1-1922284156
Cites: BJOG. 2012 May;119(6):739-5122489763
Cites: J Matern Fetal Neonatal Med. 2012 Aug;25(8):1423-722081889
Cites: Reprod Sci. 2012 Sep;19(9):939-4822527984
Cites: Nutr J. 2012;11:7522992251
Cites: Eur J Nutr. 2013 Feb;52(1):327-3622430980
Cites: Cochrane Database Syst Rev. 2013;3:CD00689623543547
Cites: Paediatr Perinat Epidemiol. 2013 Nov;27(6):553-6323919580
Cites: Paediatr Perinat Epidemiol. 2014 May;28(3):270-424506308
Cites: Biomed Res Int. 2014;2014:48191424724083
Cites: Am J Clin Nutr. 2000 May;71(5 Suppl):1295S-303S10799405
Cites: Br Med J. 1970 Jan 3;1(5687):16-75460838
Cites: World Health Organ Tech Rep Ser. 1970;457:1-604993526
Cites: J Obstet Gynaecol Br Commonw. 1971 Sep;78(9):781-55097161
Cites: Med J Aust. 1974 Sep 28;2(13):479-844431351
Cites: Lancet. 1991 Jul 20;338(8760):131-71677062
Cites: N Engl J Med. 1992 Dec 24;327(26):1832-51307234
Cites: Arch Gynecol Obstet. 1994;255(3):131-97979565
Cites: Am J Clin Nutr. 1996 Apr;63(4):520-58599315
Cites: Am J Epidemiol. 1997 Jul 15;146(2):134-419230775
Cites: Eur J Clin Nutr. 1997 Oct;51(10):643-609347284
Cites: Lancet. 1952 Aug 2;2(6727):214-514939891
Cites: Am J Obstet Gynecol. 2004 Dec;191(6):1851-715592264
Cites: Paediatr Perinat Epidemiol. 2005 Mar;19(2):112-2415787886
Cites: Lancet. 2005 Mar 26-Apr 1;365(9465):1147-5215794969
Cites: Am J Clin Nutr. 2006 May;83(5):993-101616685040
Cites: Int J Epidemiol. 2006 Oct;35(5):1146-5016926217
Cites: Am J Clin Nutr. 2006 Nov;84(5):1134-4117093167
Cites: Am J Obstet Gynecol. 2007 Feb;196(2):107-1817306646
Cites: Ann Nutr Metab. 2007;51(2):146-5417536192
Cites: Matern Child Nutr. 2008 Jan;4(1):14-2718171404
Cites: Matern Child Nutr. 2008 Jan;4(1):28-4318171405
Cites: Obstet Gynecol. 2008 Jul;112(1):127-3418591318
Cites: N Engl J Med. 2008 Jul 17;359(3):262-7318635431
Cites: Ann Nutr Metab. 2008;52(4):272-8018645244
Cites: PLoS Med. 2009 May 5;6(5):e100006119434228
Cites: PLoS Med. 2009 May 5;6(5):e100007719434229
Cites: Br J Nutr. 2009 Sep;102(5):777-8519327193
Cites: Paediatr Perinat Epidemiol. 2009 Nov;23(6):597-60819840297
Cites: Am J Clin Nutr. 2010 Jan;91(1):231-719923379
Cites: Eur J Obstet Gynecol Reprod Biol. 2010 Feb;148(2):135-4019926391
Cites: J Nutr. 2010 Mar;140(3):572-920089778
Cites: BJOG. 2010 Jun;117(7):821-920353456
Cites: Am J Clin Nutr. 2011 Sep;94(3):906-1221795441
Cites: Eur J Obstet Gynecol Reprod Biol. 1999 Dec;87(2):105-10; discussion 103-410597955
Cites: Int J Epidemiol. 2014 Aug;43(4):1132-924603317
PubMed ID
25361626 View in PubMed
Less detail

Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study.

https://arctichealth.org/en/permalink/ahliterature108097
Source
BMC Pregnancy Childbirth. 2013;13:160
Publication Type
Article
Date
2013
Author
Verena Sengpiel
Jonas Bacelis
Ronny Myhre
Solveig Myking
Aase Devold Pay
Margaretha Haugen
Anne-Lise Brantsæter
Helle Margrete Meltzer
Roy M Nilsen
Per Magnus
Stein Emil Vollset
Staffan Nilsson
Bo Jacobsson
Author Affiliation
Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Sahlgrenska University Hospital/Östra, SE-416 85 Göteborg, Sweden. verena.sengpiel@obgyn.gu.se
Source
BMC Pregnancy Childbirth. 2013;13:160
Date
2013
Language
English
Publication Type
Article
Keywords
Adult
Diet
Dietary Supplements
Female
Folic Acid - administration & dosage
Gestational Age
Humans
Norway
Nutrition Policy
Pregnancy
Premature Birth - prevention & control
Proportional Hazards Models
Prospective Studies
Questionnaires
Risk factors
Time Factors
Vitamin B Complex - administration & dosage
Young Adult
Abstract
Health authorities in numerous countries recommend periconceptional folic acid to pregnant women to prevent neural tube defects. The objective of this study was to examine the association of folic acid supplementation during different periods of pregnancy and of dietary folate intake with the risk of spontaneous preterm delivery (PTD).
The Norwegian Mother and Child Cohort Study is a population-based prospective cohort study. A total of 65,668 women with singleton pregnancies resulting in live births in 1999-2009 were included. Folic acid supplementation was self-reported from 26 weeks before pregnancy until week 24 during pregnancy. At gestational week 22, the women completed a food frequency questionnaire, which allowed the calculation of their average total folate intake from foods and supplements for the first 4-5 months of pregnancy. Spontaneous PTD was defined as the spontaneous onset of delivery between weeks 22+0 and 36+6 (n?=?1,628).
The median total folate intake was 266 µg/d (interquartile range IQR 154-543) in the overall population and 540 µg/d (IQR 369-651) in the supplement users. Eighty-three percent reported any folic acid supplementation from
Notes
Cites: Am J Obstet Gynecol. 2007 Feb;196(2):107-1817306646
Cites: Am J Clin Nutr. 2006 Nov;84(5):1134-4117093167
Cites: Matern Child Nutr. 2008 Jan;4(1):14-2718171404
Cites: Matern Child Nutr. 2008 Jan;4(1):28-4318171405
Cites: Obstet Gynecol. 2008 Jul;112(1):127-3418591318
Cites: N Engl J Med. 2008 Jul 17;359(3):262-7318635431
Cites: Ann Nutr Metab. 2008;52(4):272-8018645244
Cites: PLoS Med. 2009 May 5;6(5):e100006119434228
Cites: PLoS Med. 2009 May 5;6(5):e100007719434229
Cites: Br J Nutr. 2009 Sep;102(5):777-8519327193
Cites: Paediatr Perinat Epidemiol. 2009 Nov;23(6):597-60819840297
Cites: Am J Clin Nutr. 2010 Jan;91(1):231-719923379
Cites: Eur J Obstet Gynecol Reprod Biol. 2010 Feb;148(2):135-4019926391
Cites: J Nutr. 2010 Mar;140(3):572-920089778
Cites: BJOG. 2010 Jun;117(7):821-920353456
Cites: Ultrasound Obstet Gynecol. 2011 Jul;38(1):18-3121472815
Cites: Am J Clin Nutr. 2011 Sep;94(3):906-1221795441
Cites: Am J Perinatol. 2011 Dec;28(10):747-5221681695
Cites: Am J Obstet Gynecol. 2012 Feb;206(2):124.e1-1922284156
Cites: BJOG. 2012 May;119(6):739-5122489763
Cites: J Matern Fetal Neonatal Med. 2012 Aug;25(8):1423-722081889
Cites: Reprod Sci. 2012 Sep;19(9):939-4822527984
Cites: Nutr J. 2012;11:7522992251
Cites: Eur J Nutr. 2013 Feb;52(1):327-3622430980
Cites: Eur J Obstet Gynecol Reprod Biol. 1999 Dec;87(2):105-10; discussion 103-410597955
Cites: Am J Clin Nutr. 2000 May;71(5 Suppl):1295S-303S10799405
Cites: Acta Obstet Gynecol Scand. 2000 Jun;79(6):435-910857866
Cites: N Engl J Med. 2002 Jan 24;346(4):282-411807155
Cites: Public Health Rep. 2004 Mar-Apr;119(2):170-315192904
Cites: Br Med J. 1970 Jan 3;1(5687):16-75460838
Cites: World Health Organ Tech Rep Ser. 1970;457:1-604993526
Cites: J Obstet Gynaecol Br Commonw. 1971 Sep;78(9):781-55097161
Cites: Med J Aust. 1974 Sep 28;2(13):479-844431351
Cites: Lancet. 1991 Jul 20;338(8760):131-71677062
Cites: N Engl J Med. 1992 Dec 24;327(26):1832-51307234
Cites: Arch Gynecol Obstet. 1994;255(3):131-97979565
Cites: Am J Clin Nutr. 1996 Apr;63(4):520-58599315
Cites: Am J Epidemiol. 1997 Jul 15;146(2):134-419230775
Cites: Eur J Clin Nutr. 1997 Oct;51(10):643-609347284
Cites: Lancet. 1952 Aug 2;2(6727):214-514939891
Cites: Am J Obstet Gynecol. 2004 Dec;191(6):1851-715592264
Cites: Paediatr Perinat Epidemiol. 2005 Mar;19(2):112-2415787886
Cites: Lancet. 2005 Mar 26-Apr 1;365(9465):1147-5215794969
Cites: Am J Clin Nutr. 2006 May;83(5):993-101616685040
Cites: Int J Epidemiol. 2006 Oct;35(5):1146-5016926217
Cites: Ann Nutr Metab. 2007;51(2):146-5417536192
PubMed ID
23937678 View in PubMed
Less detail

Literature-Informed Analysis of a Genome-Wide Association Study of Gestational Age in Norwegian Women and Children Suggests Involvement of Inflammatory Pathways.

https://arctichealth.org/en/permalink/ahliterature284657
Source
PLoS One. 2016;11(8):e0160335
Publication Type
Article
Date
2016
Author
Jonas Bacelis
Julius Juodakis
Verena Sengpiel
Ge Zhang
Ronny Myhre
Louis J Muglia
Staffan Nilsson
Bo Jacobsson
Source
PLoS One. 2016;11(8):e0160335
Date
2016
Language
English
Publication Type
Article
Keywords
Adult
Female
Genetic Loci
Genome-Wide Association Study
Gestational Age
Humans
Infant, Newborn
Infant, Premature
Models, Genetic
Norway
Premature Birth - genetics - immunology
Abstract
Five-to-eighteen percent of pregnancies worldwide end in preterm birth, which is the major cause of neonatal death and morbidity. Approximately 30% of the variation in gestational age at birth can be attributed to genetic factors. Genome-wide association studies (GWAS) have not shown robust evidence of association with genomic loci yet.
We separately investigated 1921 Norwegian mothers and 1199 children from pregnancies with spontaneous onset of delivery. Individuals were further divided based on the onset of delivery: initiated by labor or prelabor rupture of membranes. Genetic association with ultrasound-dated gestational age was evaluated using three genetic models and adaptive permutations. The top-ranked loci were tested for enrichment in 12 candidate gene-sets generated by text-mining PubMed abstracts containing pregnancy-related keywords.
The six GWAS did not reveal significant associations, with the most extreme empirical p = 5.1 × 10-7. The top loci from maternal GWAS with deliveries initiated by labor showed significant enrichment in 10 PubMed gene-sets, e.g., p = 0.001 and 0.005 for keywords "uterus" and "preterm" respectively. Enrichment signals were mainly caused by infection/inflammation-related genes TLR4, NFKB1, ABCA1, MMP9. Literature-informed analysis of top loci revealed further immunity genes: IL1A, IL1B, CAMP, TREM1, TFRC, NFKBIA, MEFV, IRF8, WNT5A.
Our analyses support the role of inflammatory pathways in determining pregnancy duration and provide a list of 32 candidate genes for a follow-up work. We observed that the top regions from GWAS in mothers with labor-initiated deliveries significantly more often overlap with pregnancy-related genes than would be expected by chance, suggesting that increased sample size would benefit similar studies.
Notes
Erratum In: PLoS One. 2016 Oct 19;11(10 ):e016532827760235
Cites: Am J Obstet Gynecol. 2002 Jul;187(1):157-6312114904
Cites: Am J Obstet Gynecol. 2010 May;202(5):431.e1-3420452482
Cites: N Engl J Med. 2010 Feb 11;362(6):529-3520147718
Cites: Science. 2014 Aug 15;345(6198):760-525124429
Cites: Nature. 2014 Jan 2;505(7481):43-924352235
Cites: Biol Reprod. 2013 Jul 18;89(1):1423740944
Cites: Gynecol Endocrinol. 2009 Jan;25(1):8-1119165657
Cites: Prostaglandins Leukot Essent Fatty Acids. 1992 Sep;47(1):29-331359570
Cites: Int J Epidemiol. 2006 Oct;35(5):1146-5016926217
Cites: Nat Genet. 2012 Mar 04;44(4):430-4, S1-222387998
Cites: J Hum Hypertens. 2007 Feb;21(2):159-6617066084
Cites: Eur J Obstet Gynecol Reprod Biol. 2013 Mar;167(1):29-3323178004
Cites: Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1657-6319759375
Cites: Am J Reprod Immunol. 2004 Apr;51(4):311-815212685
Cites: Hypertension. 2011 Sep;58(3):497-50421730298
Cites: Rev Obstet Gynecol. 2012;5(3-4):e137-4323483768
Cites: Hum Reprod. 2007 Jan;22(1):224-916959810
Cites: J Obstet Gynaecol (Tokyo 1995). 1995 Apr;21(2):185-948556580
Cites: Lancet. 2008 Jan 12;371(9607):164-7518191687
Cites: Reprod Biol Endocrinol. 2008 Jan 11;6:118190708
Cites: NCHS Data Brief. 2015 Sep;(216):1-826460599
Cites: Eur J Obstet Gynecol Reprod Biol. 2015 Jul;190:11-925917437
Cites: J Immunol. 2010 Jul 15;185(2):1248-5720554966
Cites: Nature. 2013 Sep 26;501(7468):506-1124037378
Cites: Genet Epidemiol. 2015 Mar;39(3):217-2625599974
Cites: Nucleic Acids Res. 2012 Jan;40(Database issue):D930-422064851
Cites: Prenat Diagn. 2008 Sep;28(9):810-418646241
Cites: Reprod Sci. 2012 Sep;19(9):962-722527985
Cites: Mol Hum Reprod. 2002 May;8(5):494-50111994547
Cites: Genomics. 2013 Mar;101(3):163-7023298525
Cites: Pediatrics. 2009 May;123(5):1320-819403498
Cites: BJOG. 2015 Sep;122(10):1295-30225761516
Cites: Hum Genet. 2013 Aug;132(8):935-4223591632
Cites: Biol Reprod. 2008 Jun;78(6):1064-7218276934
Cites: Physiol Genomics. 2013 Nov 15;45(22):1035-4824046280
Cites: Hum Genet. 2015 Jul;134(7):803-825920518
Cites: J Virol. 2005 Aug;79(15):9556-6516014917
Cites: Am J Reprod Immunol. 2015 Mar;73(3):199-21325582523
Cites: Reproduction. 2013 Jan 24;145(2):R55-6423221013
Cites: Int J Biochem Cell Biol. 2010 Feb;42(2):241-5219828131
Cites: Cell Rep. 2014 Jul 24;8(2):382-9225043182
Cites: PLoS Pathog. 2010 Aug 12;6(8):e100094920711357
Cites: Microb Pathog. 2013 Aug-Sep;61-62:57-6123707398
Cites: BJOG. 2000 Mar;107(3):375-8110740335
Cites: BJOG. 2006 Dec;113 Suppl 3:17-4217206962
Cites: Pediatr Res. 2012 Nov;72(5):539-4422902432
Cites: J Perinatol. 2007 Nov;27(11):672-8017855807
Cites: Gigascience. 2015 Feb 25;4:725722852
Cites: Mol Cell Endocrinol. 2002 Feb 22;187(1-2):233-811988332
Cites: PLoS One. 2014 Aug 04;9(8):e10343425089904
Cites: Hypertens Pregnancy. 2010;29(3):330-4120670156
Cites: J Immunol. 2006 Feb 15;176(4):2455-6416456005
Cites: FASEB J. 2014 May;28(5):2358-6824497579
Cites: J Neuroimmunol. 1995 Dec 31;63(2):157-628550813
Cites: BMJ. 2002 Aug 10;325(7359):30112169504
Cites: Mol Hum Reprod. 2010 Apr;16(4):267-7219995880
Cites: Pregnancy Hypertens. 2012 Jul;2(3):221-226105295
Cites: J Exp Med. 2002 Dec 16;196 (12 ):1605-1512486103
Cites: BMC Infect Dis. 2005 Jul 06;5:5516000177
Cites: J Biol Chem. 2010 May 21;285(21):16369-7720348106
Cites: J Hepatol. 2009 Mar;50(3):453-6019144437
Cites: Mol Hum Reprod. 2009 Feb;15(2):121-3019141488
Cites: Am J Respir Cell Mol Biol. 2009 Nov;41(5):583-919251946
Cites: PLoS One. 2014 Jul 07;9(7):e10168225000409
Cites: PLoS Med. 2015 Aug 18;12(8):e100186526284790
Cites: Diabetes Metab. 2010 Feb;36(1):58-6320074991
Cites: J Hypertens. 2014 Sep;32(9):1833-4124979298
Cites: Eur J Obstet Gynecol Reprod Biol. 2014 May;176:132-624666799
Cites: Nature. 2013 Jun 6;498(7452):118-2223719382
Cites: Biol Reprod. 1998 Oct;59(4):925-329746745
Cites: Theriogenology. 2011 Sep 1;76(4):687-9921652061
Cites: J Reprod Immunol. 2015 Feb;107:31-4225435436
Cites: Blood. 2006 Aug 1;108(3):965-7316601243
Cites: BMC Pregnancy Childbirth. 2010 Oct 21;10:6620964862
Cites: Acta Obstet Gynecol Scand. 2007;86(9):1103-1017712652
Cites: Lancet. 2012 Jun 9;379(9832):2162-7222682464
Cites: Nat Immunol. 2015 May;16(5):495-50425848864
Cites: Nat Med. 2003 Sep;9(9):1166-7212910263
Cites: Genes Immun. 2009 Dec;10 (8):678-8619675583
Cites: Nucleic Acids Res. 2015 Jan;43(Database issue):D1079-8525361968
Cites: Bioinformatics. 2012 Jul 1;28(13):1797-922513993
Cites: Nat Med. 2012 Dec;18(12):1754-6723223073
Cites: Protein Sci. 2013 Jan;22(1):1-1023139046
Cites: Biol Reprod. 2006 Oct;75(4):605-1416807381
Cites: J Cell Biol. 2010 Jul 12;190(1):129-4120603330
Cites: Scand J Rheumatol Suppl. 1998;107:105-89759145
Cites: J Clin Endocrinol Metab. 2008 Mar;93(3):895-90018182450
Cites: Nat Genet. 2013 Oct;45(10):1238-4324013639
Cites: J Endod. 2014 Jan;40(1):69-7524331994
Cites: Science. 2015 May 8;348(6235):648-6025954001
Cites: PLoS One. 2013 Apr 16;8(4):e6178123613933
PubMed ID
27490719 View in PubMed
Less detail

Maternal caffeine intake during pregnancy and childhood growth and overweight: results from a large Norwegian prospective observational cohort study.

https://arctichealth.org/en/permalink/ahliterature296615
Source
BMJ Open. 2018 04 23; 8(3):e018895
Publication Type
Journal Article
Observational Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Date
04-23-2018
Author
Eleni Papadopoulou
Jérémie Botton
Anne-Lise Brantsæter
Margaretha Haugen
Jan Alexander
Helle Margrete Meltzer
Jonas Bacelis
Anders Elfvin
Bo Jacobsson
Verena Sengpiel
Author Affiliation
Division of Infection Control and Environmental Health, Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway.
Source
BMJ Open. 2018 04 23; 8(3):e018895
Date
04-23-2018
Language
English
Publication Type
Journal Article
Observational Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Keywords
Caffeine - administration & dosage - adverse effects
Child
Child Development - drug effects
Child, Preschool
Cohort Studies
Diet Records
Eating
Female
Humans
Infant
Infant, Newborn
Norway
Overweight - chemically induced - etiology
Pregnancy
Prenatal Exposure Delayed Effects - chemically induced - etiology
Prospective Studies
Risk factors
Weight Gain
Abstract
To study the association between maternal caffeine intake during pregnancy and the child's weight gain and overweight risk up to 8 years.
Prospective nationwide pregnancy cohort.
The Norwegian Mother and Child Cohort Study.
A total of 50?943 mothers recruited from 2002 to 2008 and their children, after singleton pregnancies, with information about average caffeine intake assessed at mid-pregnancy.
Child's body size information at 11 age points from 6 weeks to 8 years. We defined excess growth in infancy as a WHO weight gain z-score of >0.67 from birth to age 1?year, and overweight according to the International Obesity Task Force. We used a growth model to assess individual growth trajectories.
Compared with pregnant women with low caffeine intake (200?mg/day had consistently higher weight. Very high caffeine exposures were associated with higher weight gain velocity from infancy to age 8 years.
Any caffeine consumption during pregnancy is associated with a higher risk of excess infant growth and of childhood overweight, mainly at preschool ages. Maternal caffeine intake may modify the overall weight growth trajectory of the child from birth to 8 years. This study adds supporting evidence for the current advice to reduce caffeine intake during pregnancy.
PubMed ID
29685923 View in PubMed
Less detail

Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: results from a large prospective observational cohort study.

https://arctichealth.org/en/permalink/ahliterature116209
Source
BMC Med. 2013;11:42
Publication Type
Article
Date
2013
Author
Verena Sengpiel
Elisabeth Elind
Jonas Bacelis
Staffan Nilsson
Jakob Grove
Ronny Myhre
Margaretha Haugen
Helle Margrete Meltzer
Jan Alexander
Bo Jacobsson
Anne-Lise Brantsaeter
Author Affiliation
Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Sahlgrenska University Hospital/Östra, SE-416 85 Gothenburg, Sweden. verena.sengpiel@obgyn.gu.se
Source
BMC Med. 2013;11:42
Date
2013
Language
English
Publication Type
Article
Keywords
Adult
Birth weight
Caffeine - metabolism
Cohort Studies
Diet - methods
Female
Humans
Norway
Pregnancy
Premature Birth
Young Adult
Abstract
Pregnant women consume caffeine daily. The aim of this study was to examine the association between maternal caffeine intake from different sources and (a) gestational length, particularly the risk for spontaneous preterm delivery (PTD), and (b) birth weight (BW) and the baby being small for gestational age (SGA).
This study is based on the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health. A total of 59,123 women with uncomplicated pregnancies giving birth to a live singleton were identified. Caffeine intake from different sources was self-reported at gestational weeks 17, 22 and 30. Spontaneous PTD was defined as spontaneous onset of delivery between 22+0 and 36+6 weeks (n = 1,451). As there is no consensus, SGA was defined according to ultrasound-based (Marsal, n = 856), population-based (Skjaerven, n = 4,503) and customized (Gardosi, n = 4,733) growth curves.
The main caffeine source was coffee, but tea and chocolate were the main sources in women with low caffeine intake. Median pre-pregnancy caffeine intake was 126 mg/day (IQR 40 to 254), 44 mg/day (13 to 104) at gestational week 17 and 62 mg/day (21 to 130) at gestational week 30. Coffee caffeine, but not caffeine from other sources, was associated with prolonged gestation (8 h/100 mg/day, P
Notes
Cites: J Obstet Gynaecol Can. 2003 Aug;25(8):656-6612908018
Cites: Educ Health (Abingdon). 2003 Jul;16(2):23014741909
Cites: J Matern Fetal Neonatal Med. 2004 Jan;15(1):44-5015101611
Cites: J Reprod Med. 1977 Aug;19(2):55-63197235
Cites: Semin Perinatol. 1981 Oct;5(4):310-47302604
Cites: Am J Obstet Gynecol. 1983 Dec 15;147(8):939-426650631
Cites: BMJ. 1990 Nov 17;301(6761):11112252919
Cites: Am J Public Health. 1991 Apr;81(4):458-612003624
Cites: Lancet. 1992 Feb 1;339(8788):283-71346292
Cites: JAMA. 1993 Feb 3;269(5):593-78421363
Cites: JAMA. 1993 Dec 22-29;270(24):2940-38254854
Cites: Brain Res Dev Brain Res. 1993 Oct 15;75(2):193-98261611
Cites: Acta Paediatr. 1996 Jul;85(7):843-88819552
Cites: J Child Adolesc Psychopharmacol. 1998;8(3):161-749853690
Cites: Eur J Clin Nutr. 2005 Feb;59(2):299-30115454971
Cites: J Nutr. 2005 May;135(5):1120-315867291
Cites: Am J Epidemiol. 2005 Nov 15;162(10):983-9016207803
Cites: Am J Epidemiol. 2006 Jun 1;163(11):1035-4116641310
Cites: Clin Obstet Gynecol. 2006 Jun;49(2):257-6916721105
Cites: J Nutr. 2004 Mar;134(3):562-714988447
Cites: Acta Obstet Gynecol Scand. 2000 Jun;79(6):435-910857866
Cites: Acta Obstet Gynecol Scand. 2000 Jun;79(6):440-910857867
Cites: N Engl J Med. 2000 Dec 21;343(25):1839-4511117975
Cites: Epidemiology. 2001 Jan;12(1):38-4211138817
Cites: Epidemiology. 2001 Jul;12(4):447-5511428387
Cites: Am J Epidemiol. 2002 Jan 1;155(1):32-711772782
Cites: Am J Epidemiol. 2002 Mar 1;155(5):429-3611867354
Cites: Hum Reprod. 2002 Jul;17(7):1746-5412093834
Cites: Am J Epidemiol. 2002 Sep 1;156(5):428-3712196312
Cites: Food Addit Contam. 2003 Jan;20(1):1-3012519715
Cites: Am J Epidemiol. 2003 Mar 1;157(5):456-6612615610
Cites: Acta Obstet Gynecol Scand. 2003 Feb;82(2):182-812648183
Cites: Epidemiol Rev. 2002;24(2):91-10112762085
Cites: Obstet Gynecol. 2003 Jul;102(1):115-2012850616
Cites: Int J Epidemiol. 2006 Oct;35(5):1146-5016926217
Cites: Am J Epidemiol. 2006 Dec 1;164(11):1115-2016931543
Cites: Am J Obstet Gynecol. 2007 Feb;196(2):107-1817306646
Cites: BMJ. 2007 Feb 24;334(7590):40917259189
Cites: Paediatr Perinat Epidemiol. 2007 Jul;21(4):300-917564586
Cites: Public Health Nutr. 2007 Aug;10(8):838-4717493318
Cites: Matern Child Nutr. 2008 Jan;4(1):14-2718171404
Cites: Matern Child Nutr. 2008 Jan;4(1):28-4318171405
Cites: Lancet. 2008 Jan 19;371(9608):261-918207020
Cites: Acta Obstet Gynecol Scand. 2008;87(3):319-2418307072
Cites: Acta Obstet Gynecol Scand. 2008;87(3):325-3018307073
Cites: Curr Med Chem. 2008;15(6):614-918336276
Cites: N Engl J Med. 2008 Jul 17;359(3):262-7318635431
Cites: BMJ. 2008;337:a233218981029
Cites: JAMA. 2008 Dec 24;300(24):2886-9719109117
Cites: Paediatr Perinat Epidemiol. 2009 Nov;23(6):597-60819840297
Cites: Obstet Gynecol. 2010 Aug;116(2 Pt 1):467-820664420
Cites: Food Chem Toxicol. 2010 Oct;48(10):2549-7620558227
Cites: Am J Clin Nutr. 2010 Nov;92(5):1120-3220844077
Cites: Maturitas. 2011 Oct;70(2):141-521802226
Cites: Pediatr Res. 2012 Jul;72(1):101-722441375
Cites: Paediatr Perinat Epidemiol. 2003 Oct;17(4):316-2314629312
Cites: Food Funct. 2012 Sep;3(9):903-1522584883
Cites: Paediatr Perinat Epidemiol. 2003 Oct;17(4):324-3114629313
Cites: Hum Reprod. 2003 Dec;18(12):2704-1014645195
Comment In: Evid Based Med. 2014 Feb;19(1):3023708202
PubMed ID
23421532 View in PubMed
Less detail

Time-Variant Genetic Effects as a Cause for Preterm Birth: Insights from a Population of Maternal Cousins in Sweden.

https://arctichealth.org/en/permalink/ahliterature293079
Source
G3 (Bethesda). 2017 04 03; 7(4):1349-1356
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Date
04-03-2017
Author
Julius Juodakis
Jonas Bacelis
Ge Zhang
Louis J Muglia
Bo Jacobsson
Author Affiliation
Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85, Sweden j.juodakis@gmail.com.
Source
G3 (Bethesda). 2017 04 03; 7(4):1349-1356
Date
04-03-2017
Language
English
Publication Type
Journal Article
Research Support, Non-U.S. Gov't
Keywords
Computer simulation
Family
Genetic Loci
Genetic Predisposition to Disease
Genetic Variation
Genotype
Gestational Age
Humans
Models, Genetic
Parturition
Premature Birth - epidemiology - genetics
Probability
Registries
Sweden - epidemiology
Time Factors
Abstract
Preterm delivery (PTD) is the leading cause of neonatal mortality worldwide, yet its etiology remains largely unexplained. We propose that the genetic factors controlling this trait could act in a nonuniform manner during pregnancy, with each factor having a unique "window of sensitivity." We test this hypothesis by modeling the distribution of gestational ages (GAs) observed in maternal cousins from the Swedish Medical Birth Register (MBR) (n = 35,541 pairs). The models were built using a time-to-event framework, with simulated genetic factors that increase the hazard of birth either uniformly across the pregnancy (constant effect) or only in particular windows (varying effect). By including various combinations of these factors, we obtained four models that were then optimized and compared. Best fit to the clinical data was observed when most of the factors had time-variant effects, independently of the number of loci simulated. Finally, power simulations were performed to assess the ability to discover varying-effect loci by usual methods for genome-wide association testing. We believe that the tools and concepts presented here should prove useful for the design of future studies of PTD and provide new insights into the genetic architecture determining human GA.
Notes
Cites: Environ Health Perspect. 2016 Oct;124(10):1608-1615 PMID 27120296
Cites: Mol Reprod Dev. 2016 Apr;83(4):276-86 PMID 26888468
Cites: Bioinformatics. 2010 Mar 15;26(6):784-90 PMID 20118118
Cites: Environ Health Perspect. 2009 Oct;117(10):1587-92 PMID 20019910
Cites: Environ Health. 2016 Jan 15;15:6 PMID 26768419
Cites: Lancet. 2012 Feb 4;379(9814):445-52 PMID 22244654
Cites: JAMA Pediatr. 2014 Jan;168(1):61-7 PMID 24247736
Cites: Lancet. 2012 Jun 9;379(9832):2151-61 PMID 22579125
Cites: Hum Genet. 2016 Feb;135(2):171-84 PMID 26661625
Cites: Birth Defects Res A Clin Mol Teratol. 2010 Sep;88(9):715-21 PMID 20672347
Cites: Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18026-31 PMID 22003128
Cites: Genet Epidemiol. 2015 Mar;39(3):217-26 PMID 25599974
Cites: Epidemiology. 2016 Mar;27(2):182-7 PMID 26489043
Cites: Dtsch Arztebl Int. 2011 Mar;108(10):163-9 PMID 21475574
Cites: Genomics. 2013 Mar;101(3):163-70 PMID 23298525
Cites: Hum Genet. 2015 Jul;134(7):803-8 PMID 25920518
Cites: Obstet Gynecol. 2011 Jan;117(1):125-30 PMID 21173653
Cites: Hum Reprod. 2001 Jul;16(7):1497-500 PMID 11425837
Cites: BJOG. 2000 Mar;107(3):375-81 PMID 10740335
Cites: Nat Genet. 2014 Nov;46(11):1173-86 PMID 25282103
Cites: PLoS One. 2016 Aug 04;11(8):e0160335 PMID 27490719
Cites: Biostatistics. 2015 Jul;16(3):509-21 PMID 25572998
Cites: Twin Res Hum Genet. 2009 Aug;12(4):333-42 PMID 19653833
Cites: Environ Int. 2014 Sep;70:118-24 PMID 24934852
Cites: Am J Epidemiol. 2009 Dec 1;170(11):1358-64 PMID 19854807
Cites: Genome Med. 2013 Apr 29;5(4):34 PMID 23673148
Cites: Am J Obstet Gynecol. 2014 May;210(5):398-405 PMID 24096276
Cites: Am J Epidemiol. 2012 Jan 15;175(2):91-8 PMID 22167746
Cites: Child Care Health Dev. 2016 May;42(3):297-312 PMID 26860873
Cites: Int J Mol Sci. 2014 Jul 21;15(7):12885-94 PMID 25050782
Cites: Eur J Obstet Gynecol Reprod Biol. 2014 May;176:132-6 PMID 24666799
Cites: PLoS One. 2014 Feb 04;9(2):e87430 PMID 24503621
Cites: Am J Epidemiol. 2009 Dec 1;170(11):1365-72 PMID 19854802
Cites: Twin Res. 2000 Jun;3(2):80-2 PMID 10918619
Cites: PLoS One. 2010 Aug 25;5(8):e12391 PMID 20811627
Cites: Am J Epidemiol. 2013 Aug 15;178(4):543-50 PMID 23568591
Cites: Am J Public Health. 1998 Oct;88(10):1528-33 PMID 9772857
Cites: Am J Epidemiol. 2009 Apr 15;169(8):1015-24 PMID 19251754
Cites: Am J Epidemiol. 2007 Apr 1;165(7):734-41 PMID 17311798
PubMed ID
28250013 View in PubMed
Less detail

7 records – page 1 of 1.