Skip header and navigation

2 records – page 1 of 1.

Draft Genome Sequence of the Basidiomycete White-Rot Fungus Phlebia centrifuga.

https://arctichealth.org/en/permalink/ahliterature290937
Source
Genome Announc. 2018 Apr 05; 6(14):
Publication Type
Journal Article
Date
Apr-05-2018
Author
Miia R Mäkelä
Mao Peng
Zoraide Granchi
Thomas Chin-A-Woeng
Rosa Hegi
Sake I van Pelt
Steven Ahrendt
Robert Riley
Matthieu Hainaut
Bernard Henrissat
Igor V Grigoriev
Ronald P de Vries
Kristiina S Hildén
Author Affiliation
Department of Microbiology, University of Helsinki, Helsinki, Finland.
Source
Genome Announc. 2018 Apr 05; 6(14):
Date
Apr-05-2018
Language
English
Publication Type
Journal Article
Abstract
Here, we report the genome sequence of wood-decaying white-rot fungus Phlebia centrifuga strain FBCC195, isolated from Norway spruce (Picea abies) in Finnish Lapland. The 34.66-Mb genome containing 13,785 gene models is similar to the genome length reported for other saprobic white-rot species.
Notes
Cites: Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704 PMID 24297253
Cites: Genome Res. 2009 Jun;19(6):1117-23 PMID 19251739
Cites: BMC Genomics. 2015 Mar 11;16:170 PMID 25887563
Cites: Fungal Genet Biol. 2005 May;42(5):403-19 PMID 15809005
Cites: Bioinformatics. 2013 Apr 15;29(8):1072-5 PMID 23422339
Cites: Bioinformatics. 2004 Nov 1;20(16):2878-9 PMID 15145805
Cites: Fungal Genet Biol. 2014 Nov;72 :201-206 PMID 24951842
PubMed ID
29622620 View in PubMed
Less detail

Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants.

https://arctichealth.org/en/permalink/ahliterature271249
Source
BMC Genomics. 2016;17(1):267
Publication Type
Article
Date
2016
Author
Marijke J van Baren
Charles Bachy
Emily Nahas Reistetter
Samuel O Purvine
Jane Grimwood
Sebastian Sudek
Hang Yu
Camille Poirier
Thomas J Deerinck
Alan Kuo
Igor V Grigoriev
Chee-Hong Wong
Richard D Smith
Stephen J Callister
Chia-Lin Wei
Jeremy Schmutz
Alexandra Z Worden
Source
BMC Genomics. 2016;17(1):267
Date
2016
Language
English
Publication Type
Article
Abstract
Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification.
We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share =8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages.
Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.
Notes
Cites: PLoS One. 2010;5(3):e949020224823
Cites: BMC Genomics. 2010;11:19220307298
Cites: Syst Biol. 2010 May;59(3):307-2120525638
Cites: Mol Biol Evol. 2010 Jul;27(7):1698-70920194427
Cites: Curr Opin Microbiol. 2010 Oct;13(5):652-6020832353
Cites: BMC Evol Biol. 2010;10:34121054875
Cites: Environ Sci Technol. 2010 Dec 1;44(23):8897-90321058662
Cites: Science. 2010 Dec 3;330(6009):1381-521097902
Cites: Bioinformatics. 2011 Apr 1;27(7):1017-821330290
Cites: Proteomics. 2011 May;11(10):2019-2621500348
Cites: J Biol Chem. 2011 Jun 17;286(24):21427-3921515685
Cites: ISME J. 2011 Jul;5(7):1095-10721289652
Cites: Nat Biotechnol. 2011 Jul;29(7):644-5221572440
Cites: Bioessays. 2011 Sep;33(9):683-9221744372
Cites: Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19824-922106285
Cites: Curr Biol. 2011 Dec 6;21(23):2017-2222100062
Cites: Nucleic Acids Res. 2012 Jan;40(Database issue):D918-2322086951
Cites: Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-8622110026
Cites: Environ Microbiol. 2012 Jan;14(1):162-7621914098
Cites: Nat Protoc. 2012 Mar;7(3):562-7822383036
Cites: J Mol Biol. 2001 Jan 19;305(3):567-8011152613
Cites: Bioinformatics. 2001 Sep;17(9):847-811590104
Cites: Plant Physiol. 2001 Dec;127(4):1595-60611743104
Cites: Genome Res. 2002 Apr;12(4):656-6411932250
Cites: Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11049-5412177431
Cites: Plant Cell Physiol. 2003 Jul;44(7):776-8112881507
Cites: PLoS One. 2012;7(6):e3964822745802
Cites: Curr Biol. 2012 Jul 10;22(13):1260-522658596
Cites: PLoS One. 2012;7(7):e4073422815801
Cites: BMC Microbiol. 2012;12:29423249425
Cites: Mol Biol Evol. 2013 Apr;30(4):772-8023329690
Cites: Environ Sci Technol. 2013 May 7;47(9):4399-40723495803
Cites: Nature. 2013 Jul 11;499(7457):209-1323760476
Cites: ISME J. 2013 Sep;7(9):1764-7423635865
Cites: PLoS One. 2013;8(10):e7418324098335
Cites: Bioinformatics. 2013 Nov 15;29(22):2936-723995391
Cites: BMC Genomics. 2013;14:68924098974
Cites: Genome Biol Evol. 2013;5(12):2393-40124273312
Cites: Proteomics. 2014 May;14(9):1102-624677814
Cites: Appl Environ Microbiol. 2014 May;80(10):3119-2724610859
Cites: PLoS Biol. 2014 Jun;12(6):e100188924959919
Cites: Genome Biol. 2012;13(8):R7422925495
Cites: ISME J. 2014 Oct;8(10):1953-6124553471
Cites: Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15827-3225267653
Cites: ISME J. 2014 Dec;8(12):2517-2925171333
Cites: Mol Biol Evol. 2015 Sep;32(9):2219-3525998521
Cites: Science. 2007 Oct 12;318(5848):245-5017932292
Cites: FEMS Microbiol Rev. 2008 Mar;32(2):208-3318081839
Cites: FEMS Microbiol Rev. 2008 Mar;32(2):168-20718266853
Cites: FEMS Microbiol Rev. 2008 Mar;32(2):234-5818266856
Cites: Plant J. 2008 Mar;53(6):924-3418036201
Cites: Bioinformatics. 2008 Apr 1;24(7):1021-318304935
Cites: Mol Biol Evol. 2000 Apr;17(4):540-5210742046
Cites: Proc Int Conf Intell Syst Mol Biol. 1999;:138-4810786296
Cites: J Mol Evol. 2000 Apr;50(4):348-5810795826
Cites: J Mol Biol. 2000 Jun 16;299(4):1113-910843862
Cites: J Mol Biol. 2000 Jul 21;300(4):1005-1610891285
Cites: Genome Res. 2003 Sep;13(9):2178-8912952885
Cites: Nat Rev Microbiol. 2003 Oct;1(1):65-7015040181
Cites: Protist. 2004 Jun;155(2):193-21415305796
Cites: J Electron Microsc (Tokyo). 1968;17(2):158-94177281
Cites: Ann N Y Acad Sci. 1974 May 10;235(0):364-864605290
Cites: J Cell Sci. 1979 Apr;36:437-59457817
Cites: Nucleic Acids Res. 1993 Nov 11;21(22):5264-728255784
Cites: Protein Sci. 1998 Jul;7(7):1626-319684896
Cites: Science. 1999 Jun 18;284(5422):1976-910373113
Cites: Environ Microbiol. 2005 Jun;7(6):853-915892704
Cites: Proteomics. 2005 Oct;5(15):3847-5016130174
Cites: Mol Biol Evol. 2006 Jan;23(1):23-916120798
Cites: Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6753-816618924
Cites: Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-7316845028
Cites: Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-5216868079
Cites: J Microbiol Methods. 2006 Dec;67(3):424-3616828186
Cites: Anal Chem. 2006 Nov 15;78(22):7796-80117105173
Cites: Cell Signal. 2007 Jan;19(1):20-3116870393
Cites: Nat Methods. 2007 Mar;4(3):207-1417327847
Cites: Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-1017460045
Cites: Mol Microbiol. 2008 May;68(4):838-4718430080
Cites: BMC Genomics. 2008;9:17418416813
Cites: J Proteome Res. 2008 Aug;7(8):3354-6318597511
Cites: Environ Microbiol. 2008 Sep;10(9):2433-4318537812
Cites: FEMS Microbiol Rev. 2008 Aug;32(5):795-82018564290
Cites: Science. 2009 Apr 10;324(5924):268-7219359590
Cites: Bioinformatics. 2009 May 1;25(9):1105-1119289445
Cites: Science. 2009 Oct 23;326(5952):53919900890
Cites: Plant Cell Physiol. 2009 Dec;50(12):2047-5619892831
Cites: Nucleic Acids Res. 2010 Jan;38(Database issue):D204-1020015972
Cites: Genome Res. 2010 Jan;20(1):45-5819858364
Cites: Biochim Biophys Acta. 2010 Feb;1800(2):144-5119647785
Cites: Protist. 2010 Apr;161(2):304-3620005168
PubMed ID
27029936 View in PubMed
Less detail