Skip header and navigation

Refine By

8 records – page 1 of 1.

Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (Pusa hispida).

https://arctichealth.org/en/permalink/ahliterature275128
Source
Environ Res. 2016 Aug 6;151:244-250
Publication Type
Article
Date
Aug-6-2016
Author
Milton Levin
Erika Gebhard
Lindsay Jasperse
Jean-Pierre Desforges
Rune Dietz
Christian Sonne
Igor Eulaers
Adrian Covaci
Rossana Bossi
Sylvain De Guise
Source
Environ Res. 2016 Aug 6;151:244-250
Date
Aug-6-2016
Language
English
Publication Type
Article
Abstract
To better elucidate the potential immune-related health effects of exposure to environmentally persistent organic pollutants (POP), such as polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), in ringed seals (Pusa hispida), a sentinel Arctic species, we assessed 1) associations between mitogen-induced lymphocyte proliferation and in vivo tissue contaminant burdens, and 2) the concentration-response effects of in vitro exposure to PFASs and PCB congeners on mitogen-induced lymphocyte proliferation. Upon in vitro contaminant exposure, the non-coplanar PCB congeners CB 138, 153, and 180, but not the coplanar CB 169, significantly reduced lymphocyte proliferation between 10 and 20µgg(-1) ww. The respective in vitro EC50 values for these congeners were 13.3, 20.7, 20.8, and 54.6µgg(-1) ww. No modulation of lymphocyte proliferation was observed upon in vitro exposure to two individual PFASs, perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA), at concentrations up to 1000ngg-1. In addition, no significant correlations were found between lymphocyte proliferation and any blood or blubber contaminant measured. Taken together, these data suggest this population of ringed seals is not currently at high risk of altered lymphocyte proliferation from exposure to the POPs or PFASs in this study.
PubMed ID
27504872 View in PubMed
Less detail

Interactions of climate, socio-economics, and global mercury pollution in the North Water.

https://arctichealth.org/en/permalink/ahliterature295701
Source
Ambio. 2018 Apr; 47(Suppl 2):281-295
Publication Type
Journal Article
Date
Apr-2018
Author
Rune Dietz
Anders Mosbech
Janne Flora
Igor Eulaers
Author Affiliation
Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark. rdi@bios.au.dk.
Source
Ambio. 2018 Apr; 47(Suppl 2):281-295
Date
Apr-2018
Language
English
Publication Type
Journal Article
Keywords
Animals
Environmental monitoring
Greenland
Humans
Mercury - analysis - toxicity
Selenium
Water
Water Pollutants, Chemical - analysis - toxicity
Abstract
Despite the remoteness of the North Water, Northwest Greenland, the local Inughuit population is affected by global anthropogenic pollution and climate change. Using a cross-disciplinary approach combining Mercury (Hg) analysis, catch information, and historical and anthropological perspectives, this article elucidates how the traditional diet is compromised by Hg pollution originating from lower latitudes. In a new approach we here show how the Inughuits in Avanersuaq are subject to high Hg exposure from the hunted traditional food, consisting of mainly marine seabirds and mammals. Violation of the provisional tolerably yearly intake of Hg, on average by a factor of 11 (range 7-15) over the last 20 years as well as the provisional tolerably monthly intake by a factor of 6 (range 2-16), raises health concerns. The surplus of Selenium (Se) in wildlife tissues including narwhals showed Se:Hg molar ratios of 1.5, 2.3, and 16.7 in muscle, liver, and mattak, respectively, likely to provide some protection against the high Hg exposure.
Notes
Cites: Sci Total Environ. 2010 Jul 1;408(15):2995-3043 PMID 19910021
Cites: Ugeskr Laeger. 1993 Jan 11;155(2):108-9 PMID 8421855
Cites: Chemosphere. 2013 Nov;93(8):1607-14 PMID 24025534
Cites: Sci Total Environ. 2004 Sep 20;331(1-3):83-105 PMID 15325143
Cites: Int J Circumpolar Health. 2012 May 17;71:18361 PMID 22663940
Cites: Infect Dis (Lond). 2015 Mar;47(3):190-4 PMID 25622940
Cites: Ecohealth. 2008 Sep;5(3):360-70 PMID 19165553
Cites: Environ Int. 2013 Sep;59:494-500 PMID 23137556
Cites: Sci Total Environ. 1990 Jun;95:41-51 PMID 2402624
Cites: Can J Microbiol. 1975 Jun;21(6):920-6 PMID 1097074
Cites: Sci Total Environ. 2000 Jan 17;245(1-3):25-47 PMID 10682354
Cites: Ambio. 2018 Apr;47(Suppl 2):244-264 PMID 29520751
Cites: Environ Int. 2013 Sep;59:485-93 PMID 23078749
Cites: Environ Pollut. 2016 Oct;217:114-23 PMID 26640153
Cites: Int J Circumpolar Health. 2012 Jul 10;71:18588 PMID 22789516
Cites: Forensic Sci Int. 2014 May;238:e1-2 PMID 24631459
Cites: Arch Environ Contam Toxicol. 2012 Nov;63(4):628-36 PMID 22932937
Cites: Sci Total Environ. 1996 Jul 16;186(1-2):67-93 PMID 8685710
Cites: J Wildl Dis. 2001 Oct;37(4):693-710 PMID 11763733
Cites: Sci Total Environ. 2009 Dec 1;407(24):6120-31 PMID 19781740
Cites: Ambio. 2018 Apr;47(Suppl 2):213-225 PMID 29520750
Cites: Sci Total Environ. 2011 Aug 15;409(18):3520-6 PMID 21684574
Cites: Sci Total Environ. 1998 Jul 11;218(1):19-31 PMID 9718742
Cites: Sci Total Environ. 2000 Jan 17;245(1-3):15-24 PMID 10682353
Cites: Sci Total Environ. 2013 Jan 15;443:775-90 PMID 23231888
Cites: Mar Environ Res. 2011 Jun;71(5):331-41 PMID 21492930
Cites: Environ Sci Technol. 2011 Feb 15;45(4):1458-65 PMID 21214235
Cites: Can J Public Health. 2008 Mar-Apr;99(2):95-7 PMID 18457280
Cites: J Wildl Dis. 2001 Oct;37(4):711-21 PMID 11763734
Cites: Environ Sci Technol. 2009 Apr 15;43(8):2983-8 PMID 19475981
Cites: Ecotoxicology. 2008 Feb;17(2):93-101 PMID 17899374
Cites: Environ Sci Technol. 2006 Feb 15;40(4):1120-5 PMID 16572764
Cites: Ecohealth. 2010 Sep;7(3):361-73 PMID 20680394
Cites: Environ Res. 2014 Aug;133:304-11 PMID 24991745
Cites: Ambio. 2018 Mar;47(2):111-115 PMID 29388125
Cites: J Comp Physiol B. 2010 Apr;180(4):577-89 PMID 20012661
Cites: Can J Infect Dis. 2003 Jul;14(4):206-9 PMID 18159458
Cites: Sci Total Environ. 1975 Jan;3(3):279-87 PMID 1111092
Cites: Arch Environ Contam Toxicol. 2004 Oct;47(3):402-13 PMID 15386135
PubMed ID
29516443 View in PubMed
Less detail

Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings - The role of age and diet.

https://arctichealth.org/en/permalink/ahliterature298893
Source
Environ Pollut. 2019 Mar; 246:527-534
Publication Type
Journal Article
Date
Mar-2019
Author
Mari Engvig Løseth
Nathalie Briels
Igor Eulaers
Torgeir Nygård
Govindan Malarvannan
Giulia Poma
Adrian Covaci
Dorte Herzke
Jan Ove Bustnes
Gilles Lepoint
Bjørn Munro Jenssen
Veerle L B Jaspers
Author Affiliation
Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway. Electronic address: mari.loseth@ntnu.no.
Source
Environ Pollut. 2019 Mar; 246:527-534
Date
Mar-2019
Language
English
Publication Type
Journal Article
Keywords
Animals
Diet
Eagles - blood
Environmental monitoring
Environmental pollutants - blood
Flame Retardants - analysis
Halogenated Diphenyl Ethers - blood
Lubricants - blood
Norway
Pesticides - blood
Polychlorinated biphenyls - blood
Abstract
Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44?-?87 days old) and stable carbon and nitrogen isotopes (d13C and d15N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82?-?59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89?-?52.19?ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03?-?2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58?-?52.94?ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by d13C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings.
PubMed ID
30583161 View in PubMed
Less detail

Prevalence of antibodies against Brucella spp. in West Greenland polar bears (Ursus maritimus) and East Greenland muskoxen (Ovibos moschatus).

https://arctichealth.org/en/permalink/ahliterature301454
Source
Polar Biology. Volume 41, Issue 9, pp 1671–1680.
Publication Type
Article
Date
September 2018
  1 document  
Author
Christian Sonne
Emilie Andersen-Ranberg
Elisabeth L. Rajala
Jørgen S. Agerholm
Eva Bonefeld-Jørgensen
Jean-Pierre Desforges
Igor Eulaers
Kim Gustavson
Bjørn M. Jenssen
Anders Koch
Aqqalu Rosing-Asvid
Niels Martin Schmidt
Carsten Grøndahl
Jesper B. Mosbacher
Ursula Siebert
Morten Tryland
Gert Mulvad
Erik W. Born
Kristin Laidre
Øystein Wiig
Rune Dietz
Ulf Magnusson
Source
Polar Biology. Volume 41, Issue 9, pp 1671–1680.
Date
September 2018
Language
English
Geographic Location
Greenland
Publication Type
Article
File Size
1526506
Keywords
Baffin Bay
Arctic
Humans
One Health
Zoonosis
Polar bears
Muskoxen
Abstract
Zoonotic infections transmitted from terrestrial and marine mammals to humans in European Arctic are of unknown significance, despite considerable potential for transmission due to local hunt and a rapidly changing environment. As an example, infection with Brucella bacteria may have significant impact on human health due to consumption of raw meat or otherwise contact with tissues and fluids of infected game species such as muskoxen and polar bears. Here, we present serological results for Baffin Bay polar bears (Ursus maritimus) (n?=?96) and North East Greenland muskoxen (Ovibos moschatus) (n?=?32) for antibodies against Brucella spp. The analysis was a two-step trial initially using the Rose Bengal Test (RBT), followed by confirmative competitive enzyme-linked immunosorbent assays of RBT-positive samples. No muskoxen had antibodies against Brucella spp., while antibodies were detected in six polar bears (6.25%) rendering a seroprevalence in line with previous findings in other Arctic regions. Seropositivity was not related to sex, age or biometrics i.e. size and body condition. Whether Brucella spp. antibodies found in polar bears were due to either prey spill over or true recurrent Brucella spp. infections is unknown. Our results therefore highlight the importance of further research into the zoonotic aspects of Brucella spp. infections, and the impact on wildlife and human health in the Arctic region.
Documents

Sonne2018_Article_PrevalenceOfAntibodiesAgainstB.pdf

Read PDF Online Download PDF
Less detail

Risk evaluation of the Arctic environmental POP exposure based on critical body residue and critical daily dose using captive Greenland sledge dogs (Canis familiaris) as surrogate species.

https://arctichealth.org/en/permalink/ahliterature269372
Source
Environ Int. 2016 Jan 9;88:221-227
Publication Type
Article
Date
Jan-9-2016
Author
Christian Sonne
Kim Gustavson
Igor Eulaers
Jean-Pierre Desforges
Robert J Letcher
Frank F Rigét
Bjarne Styrishave
Rune Dietz
Source
Environ Int. 2016 Jan 9;88:221-227
Date
Jan-9-2016
Language
English
Publication Type
Article
Abstract
The risk from POP (persistent organic pollutant) exposure and subsequent reproductive, immunotoxic and liver histopathological effects was evaluated in a classical parallel trial on Greenland sledge dogs (Canis familiaris) fed contaminated minke whale (Balaenoptera acutorostrata) blubber. First the critical body residues (CBRs) were estimated using the physiologically-based pharmacokinetic (PBPK) model for seven POP compounds based on rat critical daily doses (CDDs). These were then compared with the actual daily oral POP doses (DD) and body residues (BR) in the sledge dogs by calculating risk quotients (RQDD: DD/CDD; RQBR: BR/CBR; =1 indicates risk). The results showed that risk quotients for reproductive, immunotoxic and liver histopathological effects were significantly lowest in the control group (p
PubMed ID
26773392 View in PubMed
Less detail

Seroprevalence for Brucella spp. in Baltic ringed seals (Phoca hispida) and East Greenland harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals.

https://arctichealth.org/en/permalink/ahliterature294995
Source
Vet Immunol Immunopathol. 2018 Apr; 198:14-18
Publication Type
Journal Article
Date
Apr-2018
Author
Christian Sonne
Emilie Andersen-Ranberg
Elisabeth L Rajala
Jørgen S Agerholm
Eva Bonefeld-Jørgensen
Jean-Pierre Desforges
Igor Eulaers
Bjørn M Jenssen
Anders Koch
Aqqalu Rosing-Asvid
Ursula Siebert
Morten Tryland
Gert Mulvad
Tero Härkönen
Mario Acquarone
Erling S Nordøy
Rune Dietz
Ulf Magnusson
Author Affiliation
Department of Bioscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, P.O. Box 358, 4000 Roskilde, Denmark. Electronic address: cs@bios.au.dk.
Source
Vet Immunol Immunopathol. 2018 Apr; 198:14-18
Date
Apr-2018
Language
English
Publication Type
Journal Article
Keywords
Animals
Antibodies, Bacterial - blood
Brucella
Brucellosis - epidemiology - microbiology - veterinary
Enzyme-Linked Immunosorbent Assay - veterinary
Female
Male
Phoca - microbiology
Pilot Projects
Seals, Earless - microbiology
Seroepidemiologic Studies
Abstract
Zoonotic infections transmitted from marine mammals to humans in the Baltic and European Arctic are of unknown significance, despite given considerable potential for transmission due to local hunt. Here we present results of an initial screening for Brucella spp. in Arctic and Baltic seal species. Baltic ringed seals (Pusa hispida, n?=?12) sampled in October 2015 and Greenland Sea harp seals (Pagophilus groenlandicus, n?=?6) and hooded seals (Cystophora cristata, n?=?3) sampled in March 2015 were serologically analysed for antibodies against Brucella spp. The serological analyses were performed using the Rose Bengal Test (RBT) followed by a confirmatory testing of RBT-positive samples by a competitive-enzyme linked immunosorbent assay (C-ELISA). Two of the Baltic ringed seals (a juvenile male and a juvenile female) were seropositive thus indicating previous exposure to a Brucella spp. The findings indicate that ringed seals in the Baltic ecosystem may be exposed to and possibly infected by Brucella spp. No seropositive individuals were detected among the Greenland harp and hooded seals. Although our initial screening shows a zoonotic hazard to Baltic locals, a more in-depth epidemiological investigation is needed in order to determine the human risk associated with this.
PubMed ID
29571513 View in PubMed
Less detail

Trace element concentrations in feathers and blood of Northern goshawk (Accipiter gentilis) nestlings from Norway and Spain.

https://arctichealth.org/en/permalink/ahliterature283921
Source
Ecotoxicol Environ Saf. 2017 Jul 05;144:564-571
Publication Type
Article
Date
Jul-05-2017
Author
Kevin J Dolan
Tomasz M Ciesielski
Syverin Lierhagen
Igor Eulaers
Torgeir Nygård
Trond V Johnsen
Pilar Gómez-Ramírez
Antonio J García-Fernández
Jan O Bustnes
Manuel E Ortiz-Santaliestra
Veerle L B Jaspers
Source
Ecotoxicol Environ Saf. 2017 Jul 05;144:564-571
Date
Jul-05-2017
Language
English
Publication Type
Article
Abstract
Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml(-1) ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg(-1) dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements.
PubMed ID
28688358 View in PubMed
Less detail

A veterinary perspective on One Health in the Arctic.

https://arctichealth.org/en/permalink/ahliterature287766
Source
Acta Vet Scand. 2017 Dec 16;59(1):84
Publication Type
Article
Date
Dec-16-2017
Author
Christian Sonne
Robert James Letcher
Bjørn Munro Jenssen
Jean-Pierre Desforges
Igor Eulaers
Emilie Andersen-Ranberg
Kim Gustavson
Bjarne Styrishave
Rune Dietz
Source
Acta Vet Scand. 2017 Dec 16;59(1):84
Date
Dec-16-2017
Language
English
Publication Type
Article
Abstract
Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to understand the holistic ecosystem health including that of humans. Here we collect and identify gaps in the current knowledge of health in the Arctic and present the veterinary perspective of One Health and ecosystem dynamics. The review shows that exposure to persistent organic pollutants (POPs) is having multiple organ-system effects across taxa, including impacts on neuroendocrine disruption, immune suppression and decreased bone density among others. Furthermore, the warming Arctic climate is suspected to influence abiotic and biotic long-range transport and exposure pathways of contaminants to the Arctic resulting in increases in POP exposure of both wildlife and human populations. Exposure to vector-borne diseases and zoonoses may increase as well through range expansion and introduction of invasive species. It will be important in the future to investigate the effects of these multiple stressors on wildlife and local people to better predict the individual-level health risks. It is within this framework that One Health approaches offer promising opportunities to survey and pinpoint environmental changes that have effects on wildlife and human health.
Notes
Cites: Aquat Toxicol. 2012 Mar;109:185-9322018916
Cites: Environ Sci Technol. 2006 Jan 15;40(2):449-5516468388
Cites: Sci Total Environ. 2010 Oct 15;408(22):5165-23420728918
Cites: Sci Total Environ. 2010 Jul 1;408(15):2995-304319910021
Cites: Chemosphere. 2013 Nov;93(8):1607-1424025534
Cites: Comp Biochem Physiol C Toxicol Pharmacol. 2010 Sep;152(3):306-1220624697
Cites: Int J Circumpolar Health. 2013 Aug 05;72:null23971017
Cites: Sci Total Environ. 2005 Apr 15;342(1-3):5-8615866268
Cites: Sci Total Environ. 2011 Aug 15;409(18):3508-1121696805
Cites: Science. 2002 Jun 21;296(5576):2158-6212077394
Cites: Environ Res. 2015 Jul;140:45-5525825130
Cites: Lancet. 2006 Dec 16;368(9553):2167-7817174709
Cites: Sci Total Environ. 2010 Jul 1;408(15):2936-6520493516
Cites: Environ Health. 2013 Jul 02;12(1):5423816203
Cites: Environ Health Perspect. 2000 Mar;108(3):205-1110706525
Cites: Crit Rev Toxicol. 2005 Oct-Nov;35(8-9):771-8116417044
Cites: Ecohealth. 2008 Sep;5(3):360-7019165553
Cites: Environ Sci Technol. 2003 Nov 1;37(21):4919-2414620819
Cites: Sci Total Environ. 2017 Jan 15;576:409-41927794227
Cites: Sci Total Environ. 2002 Aug 5;295(1-3):167-8112186285
Cites: Environ Int. 2013 Sep;59:494-50023137556
Cites: Chemosphere. 2010 Jun;80(2):75-8220435334
Cites: Ambio. 2003 Sep;32(6):385-814627366
Cites: Environ Health Perspect. 2010 Aug;118(8):1137-4520529764
Cites: Mol Ecol. 2010 Jan;19(2):307-1420002585
Cites: Sci Total Environ. 2008 Feb 25;391(1):41-5418063018
Cites: Nat Neurosci. 2008 Sep;11(9):995-719160494
Cites: Environ Res. 2016 Nov;151:244-25027504872
Cites: Nat Commun. 2011 Feb 08;2:18621304515
Cites: Sci Total Environ. 2006 Nov 1;370(2-3):372-8116904734
Cites: Neuroimmunomodulation. 2008;15(1):68-7518667802
Cites: Environ Int. 2013 Sep;59:485-9323078749
Cites: Environ Pollut. 2016 Oct;217:114-2326640153
Cites: Environ Pollut. 2008 Apr;152(3):621-917707109
Cites: Environ Int. 2010 Jul;36(5):461-9120398940
Cites: Basic Clin Pharmacol Toxicol. 2008 Feb;102(2):146-5418226068
Cites: Environ Res. 2008 Nov;108(3):387-9218814871
Cites: Arch Toxicol. 2012 Sep;86(9):1349-6722456834
Cites: Environ Health Perspect. 2004 Mar;112(3):359-6214998753
Cites: Environ Sci Technol. 2010 Jan 1;44(1):316-2219957995
Cites: Glob Chang Biol. 2013 Aug;19(8):2360-7223640921
Cites: J Wildl Dis. 2001 Oct;37(4):693-71011763733
Cites: Sci Total Environ. 2009 Dec 1;407(24):6120-3119781740
Cites: Sci Total Environ. 2004 Sep 20;331(1-3):107-2415325144
Cites: JAMA. 2012 Jan 25;307(4):391-722274686
Cites: Environ Res. 2016 Nov;151:50-5727450999
Cites: Environ Res. 2012 Apr;114:24-3022406289
Cites: Environ Int. 2016 Jan;86:126-3926590481
Cites: Environ Sci Technol. 2009 Jun 15;43(12):4334-919603643
Cites: Environ Res. 2015 Feb;137:287-9125601730
Cites: Sci Total Environ. 2012 Feb 15;417-418:117-2822264925
Cites: Int J Circumpolar Health. 2005 Dec;64(5):478-8616440610
Cites: Lancet Neurol. 2014 Mar;13(3):330-824556010
Cites: Zoonoses Public Health. 2014 Sep;61(6):377-9424344685
Cites: Environ Sci Technol. 2014 Nov 4;48(21):12952-6125286162
Cites: Proc Biol Sci. 2014 Feb 05;281(1779):2013312824500172
Cites: Environ Health. 2017 Jun 13;16(1):5628610584
Cites: Environ Health. 2011 Oct 06;10:8821978366
Cites: Environ Sci Technol. 2011 Oct 1;45(19):7962-7321542574
Cites: Environ Health. 2006 Dec 21;5:3317184534
Cites: Sci Total Environ. 2018 Jan 1;610-611:121-13628803190
Cites: Environ Sci Technol. 2006 Sep 15;40(18):5668-7417007124
Cites: Environ Pollut. 2007 Mar;146(1):166-7317055135
Cites: Environ Health Perspect. 2002 Apr;110(4):411-711940460
Cites: Environ Pollut. 2017 Nov;230:598-60828710978
Cites: Int J Circumpolar Health. 2005 Dec;64(5):468-7716440609
Cites: Sci Total Environ. 2011 Aug 15;409(18):3520-621684574
Cites: Environ Toxicol Chem. 2009 Jan;28(1):133-4018717617
Cites: Environ Health Perspect. 2006 Aug;114(8):1301-516882544
Cites: J Toxicol Environ Health A. 2005 Mar 26;68(6):457-8415799246
Cites: Environ Int. 2014 Mar;64:91-724382481
Cites: J Neurochem. 2009 Dec;111(6):1327-4719818104
Cites: Sci Total Environ. 2005 Jan 20;337(1-3):45-5815626378
Cites: Environ Res. 2015 Apr;138:191-20125725300
Cites: Lancet. 2017 Oct 19;:null29056410
Cites: PLoS One. 2014 Nov 26;9(11):e11374625426720
Cites: Ecohealth. 2015 Dec;12 (4):713-2526070525
Cites: Hereditas. 2012 Jun;149(3):99-10722804342
Cites: Environ Res. 2014 Oct;134:17-2325042032
Cites: Sci Total Environ. 2013 Jan 15;443:775-9023231888
Cites: J Toxicol Environ Health A. 2004 Apr 9;67(7):555-8215129552
Cites: Sci Total Environ. 2010 Jul 1;408(15):3044-5120006375
Cites: Ecotoxicol Environ Saf. 2014 Jun;104:403-824725758
Cites: Int J Circumpolar Health. 2016 Dec 13;75:3380527974137
Cites: Environ Res. 1999 May;80(4):369-8210330311
Cites: Environ Sci Technol. 2013 May 7;47(9):4778-8623551254
Cites: Chemosphere. 1998 Oct-Nov;37(9-12):1845-539828313
Cites: Int J Circumpolar Health. 2012 Jan;71(1):1799828417759
Cites: Sci Total Environ. 2017 Dec 1;601-602:237-24628554115
Cites: Chemosphere. 2012 Sep;88(11):1269-7522494529
Cites: Ecol Evol. 2013 Sep;3(10):3509-2324223286
Cites: Rural Remote Health. 2010 Apr-Jun;10(2):136220572746
Cites: Environ Sci Technol. 2017 Apr 18;51(8):4673-468028301147
Cites: Environ Health Perspect. 2006 Apr;114 Suppl 1:76-8016818250
Cites: Glob Chang Biol. 2014 Aug;20(8):2484-9124824677
Cites: Environ Sci Technol. 2011 Feb 15;45(4):1458-6521214235
Cites: Heredity (Edinb). 2010 Jul;105(1):105-1220179736
Cites: Environ Health Perspect. 1995 Sep;103 Suppl 6:73-68549496
Cites: Toxicology. 2017 Jan 15;375:28-3627876672
Cites: Environ Health Perspect. 2003 Apr;111(4):A198-912676633
Cites: Environ Toxicol Chem. 2013 Mar;32(3):713-2223280712
Cites: Adv Parasitol. 2013;82:33-20423548085
Cites: Exp Clin Immunogenet. 1994;11(2-3):149-627826664
Cites: J Wildl Dis. 2001 Oct;37(4):711-2111763734
Cites: J Child Psychol Psychiatry. 2008 Oct;49(10):1020-3018492038
Cites: Environ Int. 2016 Nov;96:180-18927692342
Cites: Environ Health Perspect. 2004 Dec;112(17):1711-615579418
Cites: Toxicology. 2010 Jun 29;273(1-3):1-1120403408
Cites: J Toxicol Environ Health A. 2010;73(12):773-8620391120
Cites: Horm Behav. 2011 Mar;59(3):393-820633562
Cites: Sci Total Environ. 2017 Nov 13;618:500-51729145101
Cites: Sci Total Environ. 2004 Sep 20;331(1-3):189-20615325149
Cites: Environ Sci Technol. 2012 Nov 6;46(21):11575-8323057644
Cites: Arch Environ Contam Toxicol. 2016 Jan;70(1):143-5426289812
Cites: Environ Res. 2015 Apr;138:22-3125682255
Cites: Environ Pollut. 2002;118(1):29-3911996380
Cites: Environ Sci Technol. 2013 Aug 6;47(15):8902-1223763488
Cites: Ecol Appl. 2008 Mar;18(2 Suppl):S126-3418494366
Cites: CMAJ. 2008 Mar 11;178(6):715-2218332386
PubMed ID
29246165 View in PubMed
Less detail

8 records – page 1 of 1.