Skip header and navigation

2 records – page 1 of 1.

Future projection of greenhouse gas emissions due to permafrost degradation using a simple numerical scheme with a global land surface model.
Prog Earth Planet Sci. 2020; 7(1):56
Publication Type
Journal Article
Tokuta Yokohata
Kazuyuki Saito
Akihiko Ito
Hiroshi Ohno
Katsumasa Tanaka
Tomohiro Hajima
Go Iwahana
Author Affiliation
Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan.
Prog Earth Planet Sci. 2020; 7(1):56
Publication Type
Journal Article
The Yedoma layer, a permafrost layer containing a massive amount of underground ice in the Arctic regions, is reported to be rapidly thawing. In this study, we develop the Permafrost Degradation and Greenhouse gasses Emission Model (PDGEM), which describes the thawing of the Arctic permafrost including the Yedoma layer due to climate change and the greenhouse gas (GHG) emissions. The PDGEM includes the processes by which high-concentration GHGs (CO2 and CH4) contained in the pores of the Yedoma layer are released directly by dynamic degradation, as well as the processes by which GHGs are released by the decomposition of organic matter in the Yedoma layer and other permafrost. Our model simulations show that the total GHG emissions from permafrost degradation in the RCP8.5 scenario was estimated to be 31-63 PgC for CO2 and 1261-2821 TgCH4 for CH4 (68th percentile of the perturbed model simulations, corresponding to a global average surface air temperature change of 0.05-0.11 °C), and 14-28 PgC for CO2 and 618-1341 TgCH4 for CH4 (0.03-0.07 °C) in the RCP2.6 scenario. GHG emissions resulting from the dynamic degradation of the Yedoma layer were estimated to be less than 1% of the total emissions from the permafrost in both scenarios, possibly because of the small area ratio of the Yedoma layer. An advantage of PDGEM is that geographical distributions of GHG emissions can be estimated by combining a state-of-the-art land surface model featuring detailed physical processes with a GHG release model using a simple scheme, enabling us to consider a broad range of uncertainty regarding model parameters. In regions with large GHG emissions due to permafrost thawing, it may be possible to help reduce GHG emissions by taking measures such as restraining land development.
PubMed ID
33088673 View in PubMed
Less detail

Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing.
DNA Res. 2013 Jun;20(3):241-53
Publication Type
Seok-Won Kim
Wataru Suda
Sangwan Kim
Kenshiro Oshima
Shinji Fukuda
Hiroshi Ohno
Hidetoshi Morita
Masahira Hattori
Author Affiliation
Center for Omics and Bioinformatics, The Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan.
DNA Res. 2013 Jun;20(3):241-53
Publication Type
Case-Control Studies
DNA, Bacterial - chemistry
Feces - microbiology
High-Throughput Nucleotide Sequencing
Intestines - microbiology
Metagenome - drug effects - genetics
Probiotics - pharmacology
RNA, Ribosomal, 16S - genetics
Sequence Analysis, DNA
Probiotics are live microorganisms that potentially confer beneficial outcomes to host by modulating gut microbiota in the intestine. The aim of this study was to comprehensively investigate effects of probiotics on human intestinal microbiota using 454 pyrosequencing of bacterial 16S ribosomal RNA genes with an improved quantitative accuracy for evaluation of the bacterial composition. We obtained 158 faecal samples from 18 healthy adult Japanese who were subjected to intervention with 6 commercially available probiotics containing either Bifidobacterium or Lactobacillus strains. We then analysed and compared bacterial composition of the faecal samples collected before, during, and after probiotic intervention by Operational taxonomic units (OTUs) and UniFrac distances. The results showed no significant changes in the overall structure of gut microbiota in the samples with and without probiotic administration regardless of groups and types of the probiotics used. We noticed that 32 OTUs (2.7% of all analysed OTUs) assigned to the indigenous species showed a significant increase or decrease of =10-fold or a quantity difference in >150 reads on probiotic administration. Such OTUs were found to be individual specific and tend to be unevenly distributed in the subjects. These data, thus, suggest robustness of the gut microbiota composition in healthy adults on probiotic administration.
Cites: Nature. 2012 Sep 13;489(7415):220-3022972295
Cites: Nat Rev Microbiol. 2009 Jan;7(1):61-7119029955
Cites: Nature. 2009 Jan 22;457(7228):480-419043404
Cites: DNA Res. 2009 Feb;16(1):1-1219147530
Cites: Gastroenterology. 2009 May;136(6):2015-3119462507
Cites: Inflamm Bowel Dis. 2009 Aug;15(8):1183-919235886
Cites: FEMS Microbiol Lett. 2012 Sep;334(1):1-1522568660
Cites: Appl Environ Microbiol. 2005 Jan;71(1):547-915640233
Cites: Appl Environ Microbiol. 2005 Mar;71(3):1501-615746353
Cites: Curr Opin Biotechnol. 2005 Apr;16(2):204-1115831388
Cites: Gut. 2006 Feb;55(2):205-1116188921
Cites: Br J Nutr. 2006 Feb;95(2):303-1216469146
Cites: FEMS Microbiol Ecol. 2006 Aug;57(2):239-5016867142
Cites: Appl Environ Microbiol. 2006 Aug;72(8):5615-716885316
Cites: Res Microbiol. 2006 Nov;157(9):857-6616934438
Cites: Br J Nutr. 2007 Jan;97(1):126-3317217568
Cites: DNA Res. 2007 Aug 31;14(4):169-8117916580
Cites: J Mol Microbiol Biotechnol. 2008;14(1-3):90-917957115
Cites: J Mol Microbiol Biotechnol. 2008;14(1-3):128-3617957120
Cites: ISME J. 2007 May;1(1):56-6618043614
Cites: Am J Clin Nutr. 2008 Jan;87(1):91-618175741
Cites: Clin Infect Dis. 2008 Feb 1;46 Suppl 2:S104-11; discussion S144-5118181712
Cites: Genome Biol. 2007;8(7):R14317659080
Cites: Nat Methods. 2008 Mar;5(3):235-718264105
Cites: Appl Environ Microbiol. 2000 Jun;66(6):2578-8810831441
Cites: Appl Environ Microbiol. 2008 Apr;74(8):2461-7018296538
Cites: FEMS Immunol Med Microbiol. 2008 Jun;53(1):18-2518336547
Cites: PLoS One. 2008;3(7):e283618665274
Cites: J Biotechnol. 2008 Aug 31;136(1-2):3-1018616967
Cites: Can J Microbiol. 2008 Aug;54(8):660-718772928
Cites: PLoS Genet. 2008 Nov;4(11):e100025519023400
Cites: Nat Methods. 2009 Sep;6(9):639-4119668203
Cites: Annu Rev Microbiol. 2009;63:269-9019575569
Cites: Nat Rev Genet. 2010 Jan;11(1):31-4619997069
Cites: ISME J. 2010 Jan;4(1):17-2719710709
Cites: PLoS One. 2010;5(1):e874520090909
Cites: Nature. 2010 Mar 4;464(7285):59-6520203603
Cites: Expert Rev Anti Infect Ther. 2010 Apr;8(4):435-5420377338
Cites: Appl Environ Microbiol. 2010 Jul;76(13):4550-220435766
Cites: Nat Rev Gastroenterol Hepatol. 2010 Sep;7(9):503-1420664519
Cites: ISME J. 2010 Nov;4(11):1481-420505752
Cites: Pediatrics. 2010 Dec;126(6):1217-3121115585
Cites: Nucleic Acids Res. 2010 Dec;38(22):e20020880993
Cites: Genome Res. 2011 Mar;21(3):494-50421212162
Cites: Curr Opin Pediatr. 2011 Apr;23(2):145-5021415831
Cites: ISME J. 2011 Apr;5(4):741-920962877
Cites: Pharmacol Res. 2011 May;63(5):366-7621349334
Cites: Bioeng Bugs. 2011 Mar-Apr;2(2):80-721636994
Cites: BMC Genomics. 2011;12:24521592414
Cites: Gut Microbes. 2010 May-Jun;1(3):186-9521327024
Cites: Int J Food Microbiol. 2011 Sep 1;149(1):50-721296446
Cites: Gut Microbes. 2011 May-Jun;2(3):127-3321646865
Cites: BMC Med. 2011;9:9221806843
Cites: Annu Rev Microbiol. 2011;65:411-2921682646
Cites: Science. 2011 Oct 7;334(6052):105-821885731
Cites: Sci Transl Med. 2011 Oct 26;3(106):106ps4122030747
Cites: Sci Transl Med. 2011 Oct 26;3(106):106ra10622030749
Cites: Nat Rev Microbiol. 2012 Jan;10(1):66-7822101918
Cites: Nat Rev Genet. 2012 Jan;13(1):47-5822179717
Cites: PLoS One. 2011;6(12):e2731022194782
Cites: Cell. 2012 Mar 16;148(6):1258-7022424233
Cites: Curr Opin Biotechnol. 2012 Apr;23(2):192-20122137452
Cites: Mol Oral Microbiol. 2012 Jun;27(3):182-20122520388
Cites: Science. 2012 Jun 8;336(6086):1262-722674330
Cites: Science. 2012 Jun 8;336(6086):1268-7322674334
PubMed ID
23571675 View in PubMed
Less detail