Skip header and navigation

Refine By

7 records – page 1 of 1.

Assessment of pre- and postnatal exposure to polychlorinated biphenyls: lessons from the Inuit Cohort Study.

https://arctichealth.org/en/permalink/ahliterature4473
Source
Environ Health Perspect. 2003 Jul;111(9):1253-8
Publication Type
Article
Date
Jul-2003
Author
Pierre Ayotte
Gina Muckle
Joseph L Jacobson
Sandra W Jacobson
Eric Dewailly
Author Affiliation
Department of Social and Preventive Medicine, Laval University and Public Health Research Unit, CHUQ-Laval University Medical Centre, Québec, Québec, Canada. pierre.ayotte@inspq.qc.ca
Source
Environ Health Perspect. 2003 Jul;111(9):1253-8
Date
Jul-2003
Language
English
Publication Type
Article
Keywords
Adolescent
Adult
Biological Markers - analysis
Breast Feeding
Chromatography, Gas
Cohort Studies
Environmental Exposure
Environmental Pollutants - analysis - blood
Epidemiologic Studies
Female
Fetal Blood - chemistry
Forecasting
Humans
Indians, North American
Infant
Infant, Newborn
Maternal-Fetal Exchange
Milk, human - chemistry
Models, Theoretical
Polychlorinated Biphenyls - analysis - blood
Pregnancy
Quebec - epidemiology
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Abstract
Polychlorinated biphenyls (PCBs) are food-chain contaminants that have been shown to induce adverse developmental effects in humans. In the course of an epidemiologic study established to investigate neurodevelopmental deficits induced by environmental PCB exposure in the Inuit population of northern Québec (Nunavik, Canada), we compared three biomarkers of prenatal exposure and models to predict PCB plasma concentration at 6 months postpartum. Concentrations of 14 PCB congeners were measured by high-resolution gas chromatography with electron capture detection in lipids extracted from maternal plasma, cord plasma, breast milk (collected at approximately 1 month postpartum), and 6-month-old infant plasma samples. Similar congener profiles were observed in all biologic samples, and PCB-153, the most abundant and persistent PCB congener, was strongly correlated with other frequently detected PCB congeners in all biologic media. When expressed on a lipid basis, maternal plasma, cord plasma, and milk concentrations of this congener were strongly intercorrelated, indicating that PCB concentration in any of these biologic media is a good indicator of prenatal exposure to PCBs. A multivariate model that included maternal PCB-153 plasma lipid concentration, breast-feeding duration, and the sum of two skin-fold thicknesses (an index of infant body fat mass) explained 72% of PCB-153 plasma concentration variance at 6 months postpartum (p
PubMed ID
12842782 View in PubMed
Less detail

Associations between prenatal cigarette smoke exposure and externalized behaviors at school age among Inuit children exposed to environmental contaminants.

https://arctichealth.org/en/permalink/ahliterature258359
Source
Neurotoxicol Teratol. 2013 Sep-Oct;39:84-90
Publication Type
Article
  1 document  
Author
Caroline Desrosiers
Olivier Boucher
Nadine Forget-Dubois
Eric Dewailly
Pierre Ayotte
Sandra W Jacobson
Joseph L Jacobson
Gina Muckle
Author Affiliation
Université Laval, Québec City, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada.
Source
Neurotoxicol Teratol. 2013 Sep-Oct;39:84-90
Language
English
Publication Type
Article
File Size
63846
Keywords
Attention - drug effects
Attention Deficit Disorder with Hyperactivity - chemically induced - epidemiology - psychology
Attention Deficit and Disruptive Behavior Disorders - chemically induced - psychology
Child
Drug Interactions
Environmental Pollutants - analysis - toxicity
Female
Fetal Blood - chemistry
Humans
Inuits - psychology
Lead Poisoning, Nervous System, Childhood - blood - psychology
Male
Mercury Poisoning, Nervous System - blood - psychology
Pregnancy
Prenatal Exposure Delayed Effects - chemically induced - psychology
Prevalence
Quebec - epidemiology
Tobacco Smoke Pollution - adverse effects
Abstract
Smoking during pregnancy is common among Inuit women from the Canadian Arctic. Yet prenatal cigarette smoke exposure (PCSE) is seen as a major risk factor for childhood behavior problems. Recent data also suggest that co-exposure to neurotoxic environmental contaminants can exacerbate the effects of PCSE on behavior. This study examined the association between PCSE and behavior at school age in a sample of Inuit children from Nunavik, Qu?bec, where co-exposure to environmental contaminants is also an important issue. Interactions with lead (Pb) and mercury (Hg), two contaminants associated with behavioral problems, were also explored.
Participants were 271 children (mean age=11.3years) involved in a prospective birth-cohort study. PCSE was assessed through maternal recall. Assessment of child behavior was obtained from the child's classroom teacher on the Teacher Report Form (TRF) and the Disruptive Behavior Disorders Rating Scale (DBD). Exposure to contaminants was assessed from umbilical cord and child blood samples. Other confounders were documented by maternal interview.
After control for contaminants and confounders, PCSE was associated with increased externalizing behaviors and attention problems on the TRF and higher prevalence of attention deficit hyperactivity disorder (ADHD) assessed on the DBD. No interactions were found with contaminants.
This study extends the existing empirical evidence linking PCSE to behavioral problems in school-aged children by reporting these effects in a population where tobacco use is normative rather than marginal. Co-exposure to Pb and Hg do not appear to exacerbate tobacco effects, suggesting that these substances act independently.
Notes
Cites: J Am Acad Child Adolesc Psychiatry. 2003 Jul;42(7):826-3312819442
Cites: Environ Health Perspect. 2000 Nov;108(11):1079-8311102300
Cites: Environ Health Perspect. 2003 Oct;111(13):1660-414527847
Cites: Early Hum Dev. 2003 Dec;75(1-2):21-3314652157
Cites: J Clin Psychol. 2004 Jun;60(6):689-9315141400
Cites: Nicotine Tob Res. 2004 Apr;6 Suppl 2:S125-4015203816
Cites: Arch Gen Psychiatry. 2004 Aug;61(8):836-4315289282
Cites: J Am Acad Child Adolesc Psychiatry. 1992 Mar;31(2):210-81564021
Cites: Psychol Bull. 1993 Sep;114(2):376-908416037
Cites: Neurotoxicol Teratol. 2005 May-Jun;27(3):395-40615939200
Cites: Biol Psychiatry. 2005 Jun 1;57(11):1377-8415950011
Cites: Pediatrics. 2005 Aug;116(2):462-716061604
Cites: Arch Gen Psychiatry. 2005 Oct;62(10):1142-716203959
Cites: Hum Mol Genet. 2006 Jul 15;15(14):2276-8416774975
Cites: J Clin Psychiatry. 2006;67 Suppl 8:7-1216961424
Cites: Acta Paediatr. 2007 Mar;96(3):377-8217407460
Cites: Environ Health Perspect. 2001 Dec;109(12):1291-911748038
Cites: Biol Psychiatry. 2003 Jan 15;53(2):130-512547468
Cites: Ann Epidemiol. 2007 Jan;17(1):27-3517027287
Cites: Am J Addict. 2006 Nov-Dec;15(6):450-617182447
Cites: Neuropsychopharmacology. 2007 Mar;32(3):693-916554741
Cites: J Am Acad Child Adolesc Psychiatry. 2007 Mar;46(3):362-917314722
Cites: Biol Psychiatry. 2007 Jun 15;61(12):1320-817157268
Cites: Arch Pediatr Adolesc Med. 2007 Sep;161(9):857-6417768285
Cites: Child Psychiatry Hum Dev. 2007 Dec;38(4):255-6917520361
Cites: Dev Psychopathol. 2008 Winter;20(1):139-6418211732
Cites: Nicotine Tob Res. 2008 Feb;10(2):267-7818236291
Cites: Environ Health Perspect. 2008 Jul;116(7):956-6218629321
Cites: Neurotoxicology. 2008 Sep;29(5):783-80118652843
Cites: Vital Health Stat 10. 2008 Jul;(237):1-1418998276
Cites: Int J Epidemiol. 2009 Jun;38(3):698-70518250076
Cites: Int J Epidemiol. 2009 Jun;38(3):680-918775874
Cites: Nicotine Tob Res. 2009 Oct;11(10):1166-7419640836
Cites: Pediatrics. 2009 Dec;124(6):e1054-6319933729
Cites: Acta Paediatr. 2010 Jan;99(1):106-1119793315
Cites: Environ Health Perspect. 2010 Jan;118(1):150-420056582
Cites: Prev Med. 2010 Jan-Feb;50(1-2):13-820026103
Cites: J Epidemiol Community Health. 2010 Jul;64(7):622-919703906
Cites: Pediatrics. 2010 Oct;126(4):705-1120855396
Cites: J Psychiatr Res. 2010 Nov;44(15):1058-6220413131
Cites: Neurotoxicol Teratol. 2011 Jan-Feb;33(1):137-4421256428
Cites: Am J Clin Nutr. 2011 May;93(5):1025-3721389181
Cites: CMAJ. 2011 May 17;183(8):E480-621555383
Cites: Alcohol Clin Exp Res. 2011 Jun;35(6):1081-9121332531
Cites: Environ Res. 2011 Nov;111(8):1173-921764051
Cites: Am J Clin Nutr. 2011 Dec;94(6):1592-922071708
Cites: Am J Med Genet B Neuropsychiatr Genet. 2012 Apr;159B(3):289-9722259195
Cites: Psychopharmacology (Berl). 2012 Oct;223(4):401-1522562524
Cites: Environ Health Perspect. 2012 Oct;120(10):1456-6123008274
Cites: J Pediatr. 2003 Jul;143(1):104-1012915833
PubMed ID
23916943 View in PubMed
Documents
Less detail

Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age.

https://arctichealth.org/en/permalink/ahliterature136323
Source
Am J Clin Nutr. 2011 May;93(5):1025-37
Publication Type
Article
Date
May-2011
Author
Olivier Boucher
Matthew J Burden
Gina Muckle
Dave Saint-Amour
Pierre Ayotte
Eric Dewailly
Charles A Nelson
Sandra W Jacobson
Joseph L Jacobson
Author Affiliation
Université Laval, Quebec, Canada.
Source
Am J Clin Nutr. 2011 May;93(5):1025-37
Date
May-2011
Language
English
Publication Type
Article
Keywords
Adolescent
Arctic Regions
Child
Child Behavior - drug effects
Child Nutritional Physiological Phenomena
Docosahexaenoic Acids - blood
Electroencephalography - drug effects
Fatty Acids, Omega-3 - administration & dosage
Female
Fetal Blood - chemistry
Food Contamination
Humans
Infant Nutritional Physiological Phenomena
Infant, Newborn
Inuits
Longitudinal Studies
Male
Maternal Nutritional Physiological Phenomena
Memory - drug effects - physiology
Memory Disorders - prevention & control
Pregnancy
Quebec
Recognition (Psychology) - drug effects
Seafood
Water Pollutants, Chemical - blood
Abstract
The beneficial effects of prenatal and early postnatal intakes of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on cognitive development during infancy are well recognized. However, few studies have examined the extent to which these benefits continue to be evident in childhood.
The aim of this study was to examine the relation of n-3 PUFAs and seafood-contaminant intake with memory function in school-age children from a fish-eating community.
In a prospective, longitudinal study in Arctic Quebec, we assessed Inuit children (n = 154; mean age: 11.3 y) by using a continuous visual recognition task to measure 2 event-related potential components related to recognition memory processing: the FN400 and the late positive component (LPC). Children were also examined by using 2 well-established neurobehavioral assessments of memory: the Digit span forward from Wechsler Intelligence Scales for Children, 4th edition, and the California Verbal Learning Test-Children's Version.
Repeated-measures analyses of variance revealed that children with higher cord plasma concentrations of docosahexaenoic acid (DHA), which is an important n-3 PUFA, had a shorter FN400 latency and a larger LPC amplitude; and higher plasma DHA concentrations at the time of testing were associated with increased FN400 amplitude. Cord DHA-related effects were observed regardless of seafood-contaminant amounts. Multiple regression analyses also showed positive associations between cord DHA concentrations and performance on neurobehavioral assessments of memory.
To our knowledge, this study provides the first neurophysiologic and neurobehavioral evidence of long-term beneficial effects of n-3 PUFA intake in utero on memory function in school-age children.
Notes
Cites: Toxicol Lett. 2000 Mar 15;112-113:119-2510720720
Cites: Eur J Clin Nutr. 2009 Apr;63(4):499-50418091766
Cites: Neurotoxicology. 2000 Dec;21(6):1029-3811233749
Cites: Pediatrics. 2001 Aug;108(2):359-7111483801
Cites: Environ Health Perspect. 2001 Sep;109(9):957-6311673127
Cites: Environ Health Perspect. 2001 Dec;109(12):1291-911748038
Cites: Early Hum Dev. 2002 Oct;69(1-2):83-9012324186
Cites: Brain Res Cogn Brain Res. 2003 Jan;15(2):191-20512429370
Cites: Pediatrics. 2003 Jan;111(1):e39-4412509593
Cites: Environ Health Perspect. 2003 Jan;111(1):65-7012515680
Cites: Eur J Clin Nutr. 2003 Jan;57(1):89-9512548302
Cites: Environ Health Perspect. 2003 Jul;111(9):1253-812842782
Cites: Arch Dis Child Fetal Neonatal Ed. 2003 Sep;88(5):F383-9012937042
Cites: J Pediatr. 2003 Dec;143(6):780-814657828
Cites: J Neurochem. 2004 Aug;90(4):979-8815287904
Cites: Electroencephalogr Clin Neurophysiol. 1983 Apr;55(4):468-846187540
Cites: Child Dev. 1985 Aug;56(4):853-603930167
Cites: Am J Public Health. 1989 Oct;79(10):1401-42551196
Cites: Neurotoxicol Teratol. 1990 May-Jun;12(3):239-482115098
Cites: Lancet. 1995 Jun 10;345(8963):1463-87769900
Cites: Lipids. 1996 Jan;31(1):85-908649239
Cites: N Engl J Med. 1996 Sep 12;335(11):783-98703183
Cites: Neurotoxicology. 1995 Winter;16(4):653-648714870
Cites: J Neurochem. 1997 Mar;68(3):1261-89048773
Cites: Eur J Clin Nutr. 1997 Apr;51(4):232-429104573
Cites: Neurotoxicol Teratol. 1997 Nov-Dec;19(6):417-289392777
Cites: Pediatr Neurol. 1998 Mar;18(3):236-439568921
Cites: Can J Public Health. 1998 May-Jun;89 Suppl 1:S20-5, 22-79654788
Cites: Arch Environ Health. 1999 Jan-Feb;54(1):40-710025415
Cites: Neuroscience. 1999;93(1):237-4110430487
Cites: Lipids. 2004 Jul;39(7):617-2615588018
Cites: Early Hum Dev. 2005 Feb;81(2):197-20315748975
Cites: J Pediatr. 2005 Apr;146(4):461-815812447
Cites: Neurotoxicol Teratol. 2005 Nov-Dec;27(6):771-8016198536
Cites: Neurosci Biobehav Rev. 2006;30(1):24-4116095697
Cites: Neurotoxicol Teratol. 2006 May-Jun;28(3):363-7516647838
Cites: Neurotoxicology. 2006 Jul;27(4):567-7816620993
Cites: Lipids. 2007 Mar;42(2):117-2217393217
Cites: Early Hum Dev. 2007 May;83(5):279-8417240089
Cites: Trends Cogn Sci. 2007 Jun;11(6):251-717481940
Cites: J Pediatr. 2008 Mar;152(3):356-6418280840
Cites: Clin Pediatr (Phila). 2008 May;47(4):355-6218180340
Cites: J Nutr. 2008 Jun;138(6):1165-7118492851
Cites: Pediatrics. 2008 Jun;121(6):1137-4518519483
Cites: Neurotoxicology. 2008 May;29(3):453-918400302
Cites: Pediatrics. 2008 Aug;122(2):e472-918676533
Cites: Am J Clin Nutr. 2008 Oct;88(4):1049-5618842793
Cites: Neuroimage. 2009 Aug 15;47(2):688-9919446639
Cites: Environ Health Perspect. 2009 Sep;117(9):1380-619750101
Cites: Child Dev. 2009 Sep-Oct;80(5):1376-8419765006
Cites: J Neurochem. 2009 Oct;111(2):510-2119682204
Cites: Am J Clin Nutr. 2010 Apr;91(4):1060-720130094
Cites: J Nutr Biochem. 2010 May;21(5):364-7320233652
Cites: Prostaglandins Leukot Essent Fatty Acids. 2010 Apr-Jun;82(4-6):305-1420188533
Cites: J Pediatr. 2011 Jan;158(1):83-90, 90.e120797725
Cites: Am J Clin Nutr. 2007 Jun;85(6):1572-717556695
Cites: Neurotoxicology. 2008 Sep;29(5):767-7518590763
Cites: Brain Res. 2008 Oct 27;1237:35-4318789910
Cites: Environ Health Perspect. 2009 Jan;117(1):7-1619165381
Cites: Prostaglandins Leukot Essent Fatty Acids. 2009 Feb-Mar;80(2-3):143-919201180
Cites: Dev Med Child Neurol. 2000 Mar;42(3):174-8110755457
PubMed ID
21389181 View in PubMed
Less detail

Prenatal methylmercury, postnatal lead exposure, and evidence of attention deficit/hyperactivity disorder among Inuit children in Arctic Québec.

https://arctichealth.org/en/permalink/ahliterature120407
Source
Environ Health Perspect. 2012 Oct;120(10):1456-61
Publication Type
Article
Date
Oct-2012
Author
Olivier Boucher
Sandra W Jacobson
Pierrich Plusquellec
Eric Dewailly
Pierre Ayotte
Nadine Forget-Dubois
Joseph L Jacobson
Gina Muckle
Author Affiliation
Centre de Recherche du Centre hospitalier universitaire de Québec, Québec, Québec, Canada.
Source
Environ Health Perspect. 2012 Oct;120(10):1456-61
Date
Oct-2012
Language
English
Publication Type
Article
Keywords
Adolescent
Arctic Regions - epidemiology
Attention Deficit Disorder with Hyperactivity - chemically induced - ethnology - etiology
Attention Deficit and Disruptive Behavior Disorders - chemically induced - epidemiology - ethnology
Child
Child Behavior
Child Behavior Disorders - chemically induced - epidemiology - ethnology
Chromatography, Gas
Conduct Disorder - chemically induced - epidemiology - ethnology
Environmental Exposure
Environmental monitoring
Environmental Pollutants - blood - toxicity
Female
Fetal Blood - chemistry
Humans
Infant, Newborn
Inuits
Lead - blood - toxicity
Longitudinal Studies
Male
Mass Spectrometry
Methylmercury Compounds - blood - toxicity
Polychlorinated Biphenyls - blood - toxicity
Pregnancy
Prenatal Exposure Delayed Effects - chemically induced - epidemiology - ethnology
Prospective Studies
Quebec - epidemiology
Spectrophotometry, Atomic
Abstract
Prenatal exposure to methylmercury (MeHg) and polychlorinated biphenyls (PCBs) has been associated with impaired performance on attention tasks in previous studies, but the extent to which these cognitive deficits translate into behavioral problems in the classroom and attention deficit/hyperactivity disorder (ADHD) remains unknown. By contrast, lead (Pb) exposure in childhood has been associated with ADHD and disruptive behaviors in several studies.
In this study we examined the relation of developmental exposure to MeHg, PCBs, and Pb to behavioral problems at school age in Inuit children exposed through their traditional diet.
In a prospective longitudinal study conducted in the Canadian Arctic, exposure to contaminants was measured at birth and at school age. An assessment of child behavior (n = 279; mean age = 11.3 years) was obtained from the child's classroom teacher on the Teacher Report Form (TRF) from the Child Behavior Checklist, and the Disruptive Behavior Disorders Rating Scale (DBD).
Cord blood mercury concentrations were associated with higher TRF symptom scores for attention problems and DBD scores consistent with ADHD. Current blood Pb concentrations were associated with higher TRF symptom scores for externalizing problems and with symptoms of ADHD (hyperactive-impulsive type) based on the DBD.
To our knowledge, this study is the first to identify an association between prenatal MeHg and ADHD symptomatology in childhood and the first to replicate previously reported associations between low-level childhood Pb exposure and ADHD in a population exposed to Pb primarily from dietary sources.
Notes
Cites: Neurotoxicol Teratol. 2006 May-Jun;28(3):363-7516647838
Cites: Environ Health Perspect. 2012 Apr;120(4):608-1522142904
Cites: Environ Health Perspect. 2006 Dec;114(12):1904-917185283
Cites: J Am Acad Child Adolesc Psychiatry. 2007 Mar;46(3):362-917314722
Cites: Arch Pediatr Adolesc Med. 2007 Sep;161(9):857-6417768285
Cites: Neuropsychol Rev. 2007 Sep;17(3):213-3317786559
Cites: Neurotoxicol Teratol. 2007 Sep-Oct;29(5):538-4617553667
Cites: Neurotoxicology. 2007 Nov;28(6):1170-717868887
Cites: J Pediatr. 2008 Mar;152(3):356-6418280840
Cites: PLoS Med. 2008 May 27;5(5):e10118507497
Cites: PLoS Med. 2008 May 27;5(5):e11218507499
Cites: Environ Health Perspect. 2008 Jul;116(7):956-6218629321
Cites: Environ Health Perspect. 2008 Aug;116(8):1085-9118709170
Cites: J Expo Anal Environ Epidemiol. 2000 Nov-Dec;10(6 Pt 2):743-5411138666
Cites: Pediatrics. 2001 Jun;107(6):1437-4211389272
Cites: Neurotoxicol Teratol. 2001 Sep-Oct;23(5):489-9511711252
Cites: Environ Health Perspect. 2001 Dec;109(12):1291-911748038
Cites: N Engl J Med. 2003 Apr 17;348(16):1517-2612700371
Cites: Lancet. 2003 May 17;361(9370):1686-9212767734
Cites: Occup Environ Med. 2003 Sep;60(9):693-512937194
Cites: Environ Health Perspect. 2003 Oct;111(13):1660-414527847
Cites: J Pediatr. 2003 Dec;143(6):780-814657828
Cites: Neurotoxicol Teratol. 2004 May-Jun;26(3):359-7115113598
Cites: J Clin Psychol. 2004 Jun;60(6):689-9315141400
Cites: Pediatrics. 1974 Nov;54(5):587-954480317
Cites: J Am Acad Child Adolesc Psychiatry. 1992 Mar;31(2):210-81564021
Cites: Environ Health Perspect. 1993 Dec;101(7):618-208143594
Cites: Sci Total Environ. 1994 Apr 29;144(1-3):153-778209226
Cites: Neurotoxicol Teratol. 1997 Nov-Dec;19(6):417-289392777
Cites: Am J Public Health. 1998 Mar;88(3):481-69518990
Cites: Pharmacol Biochem Behav. 1998 Jun;60(2):545-529632239
Cites: Arch Environ Health. 1999 Jan-Feb;54(1):40-710025415
Cites: Environ Health Perspect. 2005 Jul;113(7):853-716002372
Cites: Neurotoxicol Teratol. 2005 Nov-Dec;27(6):771-8016198536
Cites: Environ Health Perspect. 2006 May;114(5):791-716675439
Cites: Neurotoxicology. 2008 Sep;29(5):776-8218590765
Cites: Neurotoxicology. 2008 Sep;29(5):783-80118652843
Cites: Environ Health Perspect. 2009 Jan;117(1):7-1619165381
Cites: Neurotoxicology. 2009 Jan;30(1):31-619100765
Cites: Food Chem Toxicol. 2009 Aug;47(8):1819-2519406197
Cites: Pediatrics. 2009 Dec;124(6):e1054-6319933729
Cites: J Atten Disord. 2010 Jan;13(4):347-5719448149
Cites: Environ Health Perspect. 2009 Oct;117(10):1607-1120019913
Cites: J Child Psychol Psychiatry. 2010 Jan;51(1):58-6519941632
Cites: Neurotoxicology. 2010 Jan;31(1):17-2519854214
Cites: Am J Epidemiol. 2010 Mar 1;171(5):593-60120106937
Cites: Neurotoxicology. 2010 Aug;31(4):373-8420403381
Cites: Environ Res. 2010 Jul;110(5):476-8320434143
Cites: Sci Total Environ. 2010 Jul 1;408(15):2995-304319910021
Cites: Sci Total Environ. 2010 Nov 1;408(23):5737-4320825975
Cites: Neurotoxicol Teratol. 2010 Nov-Dec;32(6):627-3220699117
Cites: Environ Health Perspect. 2010 Dec;118(12):1654-6720829149
Cites: Biol Psychiatry. 2011 Jun 15;69(12):e145-5721550021
Cites: Lancet. 2006 Dec 16;368(9553):2167-7817174709
PubMed ID
23008274 View in PubMed
Less detail

Response inhibition and error monitoring during a visual go/no-go task in inuit children exposed to lead, polychlorinated biphenyls, and methylmercury.

https://arctichealth.org/en/permalink/ahliterature129096
Source
Environ Health Perspect. 2012 Apr;120(4):608-15
Publication Type
Article
Date
Apr-2012
Author
Olivier Boucher
Matthew J Burden
Gina Muckle
Dave Saint-Amour
Pierre Ayotte
Éric Dewailly
Charles A Nelson
Sandra W Jacobson
Joseph L Jacobson
Author Affiliation
Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada.
Source
Environ Health Perspect. 2012 Apr;120(4):608-15
Date
Apr-2012
Language
English
Publication Type
Article
Keywords
Adolescent
Child
Electroencephalography
Environmental Pollutants - blood - toxicity
Evoked Potentials, Visual
Fetal Blood - chemistry
Humans
Inhibition (Psychology)
Inuits
Lead - blood - toxicity
Longitudinal Studies
Methylmercury Compounds - blood - toxicity
Polychlorinated Biphenyls - blood - toxicity
Prospective Studies
Psychomotor Performance
Quebec
Reaction Time
Spectrophotometry, Atomic
Abstract
Lead (Pb) and polychlorinated biphenyls (PCBs) are neurotoxic contaminants that have been related to impairment in response inhibition.
In this study we examined the neurophysiological correlates of the response inhibition deficits associated with these exposures, using event-related potentials (ERPs) in a sample of school-age Inuit children from Arctic Québec exposed through their traditional diet.
In a prospective longitudinal study, we assessed 196 children (mean age, 11.3 years) on a visual go/no-go response inhibition paradigm. Pb, PCB, and mercury (Hg) concentrations were analyzed in cord and current blood samples. Hierarchical multiple regression analyses were conducted to examine the associations of contaminant levels to go/no-go performance (mean reaction time, percent correct go, percent correct no-go) and five ERPs [N2, P3, error-related negativity, error positivity (Pe), and correct response positivity (Pc)] after control for confounding variables.
Current blood Pb concentrations were associated with higher rates of false alarms and with decreased P3 amplitudes to go and no-go trials. Current plasma PCB-153 concentrations were associated with slower reaction times and with reduced amplitudes of the Pe and Pc response-related potentials. Hg concentrations were not related to any outcome on this task but showed significant interactions with other contaminants on certain outcomes.
These results suggest that Pb exposure during childhood impairs the child's ability to allocate the cognitive resources needed to correctly inhibit a prepotent response, resulting in increased impulsivity. By contrast, postnatal PCB exposure appears to affect processes associated with error monitoring, an aspect of behavioral regulation required to adequately adapt to the changing demands of the environment, which results in reduced task efficiency.
Notes
Cites: Toxicol Appl Pharmacol. 2007 Nov 15;225(1):1-2717904601
Cites: Neurotoxicol Teratol. 2007 Sep-Oct;29(5):527-3717706923
Cites: J Pediatr. 2008 Mar;152(3):356-6418280840
Cites: PLoS Med. 2008 May 27;5(5):e11218507499
Cites: Environ Health Perspect. 2009 Jan;117(1):7-1619165381
Cites: Pediatrics. 2009 Mar;123(3):e376-8519254973
Cites: Pediatrics. 2009 Dec;124(6):e1054-6319933729
Cites: Neurotoxicology. 2009 Nov;30(6):1070-719576242
Cites: Biol Psychiatry. 2010 Feb 1;67(3):238-4519765686
Cites: Environ Res. 2010 Jul;110(5):476-8320434143
Cites: Alcohol Clin Exp Res. 2011 Jan;35(1):69-8220958332
Cites: Neuropsychologia. 2011 Feb;49(3):405-1521130788
Cites: Environ Health Perspect. 2011 Mar;119(3):403-820947467
Cites: Am J Clin Nutr. 2011 May;93(5):1025-3721389181
Cites: Cogn Psychol. 2000 Aug;41(1):49-10010945922
Cites: Public Health Rep. 2000 Nov-Dec;115(6):521-911354334
Cites: Neurotoxicol Teratol. 2001 Jul-Aug;23(4):305-1711485834
Cites: Environ Health Perspect. 2001 Dec;109(12):1291-911748038
Cites: J Cogn Neurosci. 2002 May 15;14(4):593-60212126500
Cites: Environ Health Perspect. 2003 Jan;111(1):65-7012515680
Cites: J Cogn Neurosci. 2003 Apr 1;15(3):432-4312729494
Cites: Environ Health Perspect. 2003 Jul;111(9):1253-812842782
Cites: Occup Environ Med. 2003 Sep;60(9):693-512937194
Cites: Environ Health Perspect. 2003 Oct;111(13):1660-414527847
Cites: J Pediatr. 2003 Dec;143(6):780-814657828
Cites: Neuropsychology. 2004 Jan;18(1):185-9314744201
Cites: Neurotoxicol Teratol. 2004 May-Jun;26(3):359-7115113598
Cites: Brain Res Cogn Brain Res. 2004 Jul;20(2):294-915183400
Cites: Electroencephalogr Clin Neurophysiol. 1983 Apr;55(4):468-846187540
Cites: Child Dev. 1985 Aug;56(4):853-603930167
Cites: Fundam Appl Toxicol. 1990 Oct;15(3):457-672124194
Cites: Neurotoxicol Teratol. 1992 Mar-Apr;14(2):131-411593987
Cites: N Engl J Med. 1996 Sep 12;335(11):783-98703183
Cites: Toxicol Appl Pharmacol. 1997 Sep;146(1):95-1039299601
Cites: Pharmacol Biochem Behav. 1998 Jun;60(2):545-529632239
Cites: Environ Res. 1999 Feb;80(2 Pt 2):S113-S12110092425
Cites: Neurology. 2005 May 10;64(9):1644-715883337
Cites: Neurotoxicol Teratol. 2005 Nov-Dec;27(6):771-8016198536
Cites: Neurotoxicol Teratol. 2006 May-Jun;28(3):363-7516647838
Cites: Clin Neurophysiol. 2006 Aug;117(8):1638-4016798078
Cites: Environ Health Perspect. 2006 Dec;114(12):1923-917185286
Cites: J Cogn Neurosci. 2007 Feb;19(2):275-8617280516
Cites: Biol Psychol. 2007 Apr;75(1):75-8617257731
Cites: Environ Health Perspect. 2007 Mar;115(3):323-717431478
Cites: Neurotoxicology. 2007 Nov;28(6):1170-717868887
PubMed ID
22142904 View in PubMed
Less detail

Temporal trends of organochlorine concentrations in umbilical cord blood of newborns from the lower north shore of the St. Lawrence river (Québec, Canada).

https://arctichealth.org/en/permalink/ahliterature189161
Source
Environ Health Perspect. 2002 Aug;110(8):835-8
Publication Type
Article
Date
Aug-2002
Author
Frédéric Dallaire
Eric Dewailly
Claire Laliberté
Gina Muckle
Pierre Ayotte
Author Affiliation
Public Health Research Unit, Laval University Medical Center, and Laval University, Québec, Canada.
Source
Environ Health Perspect. 2002 Aug;110(8):835-8
Date
Aug-2002
Language
English
Publication Type
Article
Keywords
Adult
Animals
Diet
Environmental Exposure
Environmental Pollutants - analysis - pharmacokinetics
Female
Fetal Blood - chemistry
Fishes
Humans
Indians, North American
Infant, Newborn
Insecticides - analysis - pharmacokinetics
Male
Maternal Exposure
Polychlorinated Biphenyls - analysis - pharmacokinetics
Pregnancy
Quebec - epidemiology
Rural Population
Seafood
Abstract
This study describes the time trends of organochlorines [OCs; 14 polychlorinated biphenyls (PCBs) and 11 chlorinated pesticides] in umbilical cord plasma of newborns in a remote Canadian coastal population. We analyzed 408 cord blood samples collected between 1993 and 2000 for PCBs, chlordanes, dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyltrichloroethylene (DDE), hexachlorobenzene (HCB), and n-3 fatty acids. We also gathered information on the mothers (age, past and present residence, ethnic group, use of tobacco during pregnancy, and breast-feeding during previous pregnancies). From 1993 to 2000, mean concentrations of PCBs, chlordanes, DDT/DDE, and HCB in cord blood decreased by 63%, 25%, 66%, and 69%, respectively (p
Notes
Cites: Environ Health Perspect. 2000 Feb;108(2):167-7210656858
Cites: Sci Total Environ. 1999 Jun 1;230(1-3):145-20710466229
Cites: Chemosphere. 2000 May-Jun;40(9-11):1111-2310739053
Cites: Environ Health Perspect. 2000 Nov;108(11):1035-4111102293
Cites: J Toxicol Environ Health A. 2001 Jan 26;62(2):69-8111209822
Cites: Environ Sci Technol. 2001 Feb 1;35(3):435-4011351711
Cites: Environ Health Perspect. 2001 Sep;109(9):957-6311673127
Cites: Clin Chim Acta. 1977 Aug 15;79(1):93-8890967
Cites: Arch Toxicol. 1981 Sep;48(2-3):127-347295031
Cites: Am J Public Health. 1983 Mar;73(3):293-66401943
Cites: Am J Public Health. 1984 Apr;74(4):378-96322600
Cites: Arch Toxicol. 1985 Jan;56(3):195-2003977600
Cites: Atherosclerosis. 1987 Jul;66(1-2):11-83632742
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-5002505694
Cites: Am J Cardiol. 1990 Oct 1;66(10):860-22145737
Cites: Sci Total Environ. 1992 Jul 15;122(1-2):75-1341514106
Cites: Sci Total Environ. 1993 Nov 1;139-140:347-558272839
Cites: Environ Health Perspect. 1993 Dec;101(7):618-208143594
Cites: Arch Environ Health. 1997 Jul-Aug;52(4):309-169210733
Cites: Sci Total Environ. 1998 Apr 23;215(1-2):31-99599454
Cites: Rev Environ Contam Toxicol. 1999;162:43-10410392042
Cites: Sci Total Environ. 1999 Jun 1;230(1-3):83-14410466228
Cites: Toxicol Lett. 2000 Mar 15;112-113:93-10110720717
PubMed ID
12153768 View in PubMed
Less detail

Time trends of persistent organic pollutants and heavy metals in umbilical cord blood of Inuit infants born in Nunavik (Québec, Canada) between 1994 and 2001.

https://arctichealth.org/en/permalink/ahliterature4468
Source
Environ Health Perspect. 2003 Oct;111(13):1660-4
Publication Type
Article
Date
Oct-2003
Author
Frédéric Dallaire
Eric Dewailly
Gina Muckle
Pierre Ayotte
Author Affiliation
Public Health Research Unit, Laval University Medical Center (CHUL-CHUQ), and Laval University, Québec City, Québec, Canada.
Source
Environ Health Perspect. 2003 Oct;111(13):1660-4
Date
Oct-2003
Language
English
Publication Type
Article
Keywords
Adult
Diet
Environmental Exposure
Environmental Pollutants - analysis - pharmacokinetics
Female
Fetal Blood - chemistry
Food Contamination
Humans
Infant, Newborn
Insecticides - analysis - pharmacokinetics
Inuits
Metals, Heavy - analysis - pharmacokinetics
Polychlorinated Biphenyls - analysis - pharmacokinetics
Pregnancy
Quebec
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Time Factors
Abstract
Inuit inhabitants of Nunavik (northern Québec, Canada) consume great quantities of marine food and are therefore exposed to high doses of food chain contaminants. In this study, we report the time trends of persistent organic pollutants, mercury, and lead in umbilical cord blood of infants from three communities of the east coast of Hudson Bay in Nunavik. We analyzed 251 cord blood samples collected from 1994 through 2001 for polychlorinated biphenyls (PCBs), dichlorodiphenyl trichloroethane (DDT), dichlorodiphenyl dichloroethylene (DDE), hexachlorobenzene (HCB), chlordanes, lead, and mercury. Using an exponential model, we found strongly significant decreasing trends for PCBs (7.9% per year, p
PubMed ID
14527847 View in PubMed
Less detail

7 records – page 1 of 1.