Skip header and navigation

3 records – page 1 of 1.

Author Correction: Early fungi from the Proterozoic era in Arctic Canada.

https://arctichealth.org/en/permalink/ahliterature301540
Source
Nature. 2019 Jul; 571(7766):E11
Publication Type
Published Erratum
Date
Jul-2019
Author
Corentin C Loron
Camille François
Robert H Rainbird
Elizabeth C Turner
Stephan Borensztajn
Emmanuelle J Javaux
Author Affiliation
Early Life Traces & Evolution-Astrobiology Laboratory, UR Astrobiology, Geology Department, University of Liège, Liège, Belgium. c.loron@uliege.be.
Source
Nature. 2019 Jul; 571(7766):E11
Date
Jul-2019
Language
English
Publication Type
Published Erratum
Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Notes
ErratumFor: Nature. 2019 Jun;570(7760):232-235 PMID 31118507
PubMed ID
31270462 View in PubMed
Less detail

Early fungi from the Proterozoic era in Arctic Canada.

https://arctichealth.org/en/permalink/ahliterature300102
Source
Nature. 2019 May 22; :
Publication Type
Journal Article
Date
May-22-2019
Author
Corentin C Loron
Camille François
Robert H Rainbird
Elizabeth C Turner
Stephan Borensztajn
Emmanuelle J Javaux
Author Affiliation
Early Life Traces & Evolution-Astrobiology Laboratory, UR Astrobiology, Geology Department, University of Liège, Liège, Belgium. c.loron@uliege.be.
Source
Nature. 2019 May 22; :
Date
May-22-2019
Language
English
Publication Type
Journal Article
Abstract
Fungi are crucial components of modern ecosystems. They may have had an important role in the colonization of land by eukaryotes, and in the appearance and success of land plants and metazoans1-3. Nevertheless, fossils that can unambiguously be identified as fungi are absent from the fossil record until the middle of the Palaeozoic era4,5. Here we show, using morphological, ultrastructural and spectroscopic analyses, that multicellular organic-walled microfossils preserved in shale of the Grassy Bay Formation (Shaler Supergroup, Arctic Canada), which dates to approximately 1,010-890 million years ago, have a fungal affinity. These microfossils are more than half a billion years older than previously reported unambiguous occurrences of fungi, a date which is consistent with data from molecular clocks for the emergence of this clade6,7. In extending the fossil record of the fungi, this finding also pushes back the minimum date for the appearance of eukaryotic crown group Opisthokonta, which comprises metazoans, fungi and their protist relatives8,9.
PubMed ID
31118507 View in PubMed
Less detail

Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures.

https://arctichealth.org/en/permalink/ahliterature294499
Source
Microb Genom. 2018 Sep; 4(9):
Publication Type
Journal Article
Date
Sep-2018
Author
Luc Cornet
Amandine R Bertrand
Marc Hanikenne
Emmanuelle J Javaux
Annick Wilmotte
Denis Baurain
Author Affiliation
1?InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
Source
Microb Genom. 2018 Sep; 4(9):
Date
Sep-2018
Language
English
Publication Type
Journal Article
Abstract
Cyanobacteria form one of the most diversified phyla of Bacteria. They are important ecologically as primary producers, for Earth evolution and biotechnological applications. Yet, Cyanobacteria are notably difficult to purify and grow axenically, and most strains in culture collections contain heterotrophic bacteria that were probably associated with Cyanobacteria in the environment. Obtaining cyanobacterial DNA without contaminant sequences is thus a challenging and time-consuming task. Here, we describe a metagenomic pipeline that enables the easy recovery of genomes from non-axenic cultures. We tested this pipeline on 17 cyanobacterial cultures from the BCCM/ULC public collection and generated novel genome sequences for 12 polar or subpolar strains and three temperate ones, including three early-branching organisms that will be useful for phylogenomics. In parallel, we assembled 31 co-cultivated bacteria (12 nearly complete) from the same cultures and showed that they mostly belong to Bacteroidetes and Proteobacteria, some of them being very closely related in spite of geographically distant sampling sites.
Notes
Cites: Bioinformatics. 2012 Jul 15;28(14):1823-9 PMID 22556368
Cites: Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11131-6 PMID 16061801
Cites: PeerJ. 2014 Sep 30;2:e603 PMID 25289188
Cites: Crit Rev Biotechnol. 2005 Jul-Sep;25(3):73-95 PMID 16294828
Cites: Front Microbiol. 2014 Feb 26;5:61 PMID 24616716
Cites: Curr Biol. 2017 Feb 6;27(3):386-391 PMID 28132810
Cites: Sci Rep. 2015 Dec 01;5:17418 PMID 26621203
Cites: Syst Biol. 2013 Jul;62(4):611-5 PMID 23564032
Cites: Nat Commun. 2014 Sep 15;5:4937 PMID 25222494
Cites: Curr Biol. 2009 Jan 27;19(2):R81-8 PMID 19174147
Cites: Nat Biotechnol. 2017 Aug 8;35(8):725-731 PMID 28787424
Cites: Mol Biol Evol. 2013 Apr;30(4):772-80 PMID 23329690
Cites: Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7737-E7745 PMID 28808007
Cites: Genome Announc. 2014 Jan 16;2(1):null PMID 24435876
Cites: Curr Biol. 2017 Apr 3;27(7):958-967 PMID 28318975
Cites: Curr Opin Microbiol. 2015 Feb;23:110-20 PMID 25461581
Cites: Nat Biotechnol. 2018 Jan;36(1):61-69 PMID 29227468
Cites: PLoS One. 2018 Jul 25;13(7):e0200323 PMID 30044797
Cites: Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17513-8 PMID 23043116
Cites: BMC Evol Biol. 2007 Feb 08;7 Suppl 1:S2 PMID 17288575
Cites: Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 PMID 26553804
Cites: Bioinformatics. 2014 Aug 1;30(15):2114-20 PMID 24695404
Cites: Genome Announc. 2017 Feb 16;5(7): PMID 28209814
Cites: Nat Biotechnol. 2014 Aug;32(8):822-8 PMID 24997787
Cites: Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 PMID 23193283
Cites: J Phycol. 2013 Dec;49(6):1040-55 PMID 27007625
Cites: PLoS One. 2015 Nov 18;10(11):e0140614 PMID 26579722
Cites: PeerJ. 2015 Aug 27;3:e1165 PMID 26336640
Cites: Bioinformatics. 2005 Sep 15;21(18):3674-6 PMID 16081474
Cites: PLoS One. 2014 Jun 02;9(6):e97564 PMID 24887330
Cites: Microbiome. 2014 Aug 01;2:26 PMID 25136443
Cites: BMC Bioinformatics. 2010 Mar 08;11:119 PMID 20211023
Cites: Mol Biol Evol. 2016 Aug;33(8):2170-2 PMID 27189556
Cites: Front Microbiol. 2016 Oct 24;7:1662 PMID 27822204
Cites: Bioinformatics. 2014 May 1;30(9):1312-3 PMID 24451623
Cites: Appl Environ Microbiol. 2000 Apr;66(4):1328-33 PMID 10742207
Cites: Sci Rep. 2016 May 09;6:25373 PMID 27156482
Cites: PLoS One. 2016 Sep 20;11(9):e0162539 PMID 27649395
Cites: Nucleic Acids Res. 1993 Nov 11;21(22):5264-72 PMID 8255784
Cites: Nucleic Acids Res. 2007;35(9):3100-8 PMID 17452365
Cites: Bioinformatics. 2013 Apr 15;29(8):1072-5 PMID 23422339
Cites: Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8 PMID 23277585
Cites: Bioinformatics. 2010 Oct 1;26(19):2460-1 PMID 20709691
Cites: ISME J. 2009 Mar;3(3):314-25 PMID 19020559
Cites: Appl Environ Microbiol. 1991 May;57(5):1448-52 PMID 16348486
Cites: Curr Microbiol. 2013 Jan;66(1):64-71 PMID 23053490
Cites: Genome Biol. 2015 Aug 06;16:157 PMID 26243257
Cites: BMC Evol Biol. 2010 Jul 13;10:210 PMID 20626897
Cites: Nat Ecol Evol. 2017 Sep;1(9):1370-1378 PMID 28890940
Cites: Nat Methods. 2015 Jan;12(1):59-60 PMID 25402007
Cites: Front Microbiol. 2017 Oct 25;8:2099 PMID 29118751
Cites: FEMS Microbiol Ecol. 2018 Apr 1;94(4):null PMID 29506259
Cites: Bioinformatics. 2011 Feb 15;27(4):578-9 PMID 21149342
Cites: Genome Res. 2015 Jul;25(7):1043-55 PMID 25977477
Cites: Nat Methods. 2014 Nov;11(11):1144-6 PMID 25218180
Cites: Appl Environ Microbiol. 1981 Dec;42(6):1085-92 PMID 16345901
Cites: Genome Res. 2017 May;27(5):824-834 PMID 28298430
Cites: Nat Ecol Evol. 2017 Jun 19;1:193 PMID 29388565
PubMed ID
30136922 View in PubMed
Less detail