Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States.
A large spatial dataset of perfluoroalkyl acid (PFAA) concentrations in eggs of herring gulls (Larus argentatus or congeneric species) collected from late April to early June between 2009 and 2014 from 28 colonies across Canada and parts of the Unites States was used to evaluate location-specific patterns in chemical concentrations and to generate hypotheses on the major sources affecting PFAA distributions. The highly bioaccumulative perfluorooctane sulfonic acid (PFOS) as well as other perfluoroalkyl sulfonic acids (PFSAs) showed the greatest concentrations in eggs from the lower Great Lakes of southern Ontario as well as from the St. Lawrence River. Despite the 2000 to 2002 phase-out of PFOS and related C8 chemistry by the major manufacturer at the time, ongoing losses from consumer products during use and disposal in urban/industrial locations continue to be major sources to the environment and are influencing the spatial trends of PFOS in Canada. In comparison to PFOS, perfluoroalkyl carboxylic acids (PFCAs) were not as concentrated in eggs in close proximity to urbanized/industrialized centers, but had surprisingly elevated levels in relatively remote regions such as Great Slave Lake, NT and East Bay in Hudson Bay, NU. The present results support the hypothesis that atmospheric transport and degradation of precursor chemicals, such as the fluorotelomer alcohols 8:2 FTOH and 10:2 FTOH, are influencing the spatial trends of PFCAs in Canada. A power analysis conducted on a representative urbanized/industrialized colony in the Toronto Harbour, ON, and a relatively remote colony in Lake Superior, emphasized the importance of consistent and long-term data collection in order to detect the anticipated changes in PFAA concentrations in Canadian gull eggs.
Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States.
A large spatial dataset of perfluoroalkyl acid (PFAA) concentrations in eggs of herring gulls (Larus argentatus or congeneric species) collected from late April to early June between 2009 and 2014 from 28 colonies across Canada and parts of the Unites States was used to evaluate location-specific patterns in chemical concentrations and to generate hypotheses on the major sources affecting PFAA distributions. The highly bioaccumulative perfluorooctane sulfonic acid (PFOS) as well as other perfluoroalkyl sulfonic acids (PFSAs) showed the greatest concentrations in eggs from the lower Great Lakes of southern Ontario as well as from the St. Lawrence River. Despite the 2000 to 2002 phase-out of PFOS and related C8 chemistry by the major manufacturer at the time, ongoing losses from consumer products during use and disposal in urban/industrial locations continue to be major sources to the environment and are influencing the spatial trends of PFOS in Canada. In comparison to PFOS, perfluoroalkyl carboxylic acids (PFCAs) were not as concentrated in eggs in close proximity to urbanized/industrialized centers, but had surprisingly elevated levels in relatively remote regions such as Great Slave Lake, NT and East Bay in Hudson Bay, NU. The present results support the hypothesis that atmospheric transport and degradation of precursor chemicals, such as the fluorotelomer alcohols 8:2 FTOH and 10:2 FTOH, are influencing the spatial trends of PFCAs in Canada. A power analysis conducted on a representative urbanized/industrialized colony in the Toronto Harbour, ON, and a relatively remote colony in Lake Superior, emphasized the importance of consistent and long-term data collection in order to detect the anticipated changes in PFAA concentrations in Canadian gull eggs.
Recognizing the factors influencing migratory individuals throughout their annual cycle is important for understanding the drivers of population dynamics. Previous studies have found that Herring Gulls (Larus argentatus) in the Atlantic region have lower survival rates than those in the Great Lakes and the Arctic. One possible explanation for divergent survival rates among these populations is differences in their non-breeding habitats.
We tracked Herring Gulls from five populations, breeding in the eastern Arctic, the Great Lakes, Newfoundland, Sable Island, and the Bay of Fundy. We assessed the extent of migratory connectivity between breeding and wintering sites, and tested if there were differences in home range size or habitat selection among these populations during the winter.
The tracked Herring Gulls had strong migratory connectivity between their breeding and wintering areas. We found that Herring Gulls from the Arctic spent most of the winter in marine habitats, while the other populations used a wider variety of habitats. However, the Newfoundland and Sable Island populations selected for urban habitats, and almost all individuals the specialized in urban habitats came from one of the three Atlantic populations.
Our results suggest that there could potentially be a link between urban habitat use during the winter and reduced adult survival in Atlantic Canada Herring Gulls.