Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, semi-fossorial rodent that appears above-ground daily during its short active season in spring and summer before re-entering a constantly dark burrow for 6 to 9 months of hibernation. This hibernation consists of multiple week-long torpor bouts interrupted by short (
Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, semi-fossorial rodent that appears above-ground daily during its short active season in spring and summer before re-entering a constantly dark burrow for 6 to 9 months of hibernation. This hibernation consists of multiple week-long torpor bouts interrupted by short (
The Earth's climate is changing at an unprecedented rate and, as ecologists, we are challenged with the difficult task of predicting how individuals and populations will respond to climate-induced changes to local and global ecosystems. Although we are beginning to understand some of the responses to changing seasonality, the physiological mechanisms that may drive these responses remain unknown. Using long-term data comparing two nearby populations (
We examined the effect of diet on pre-hibernation fattening and the gut microbiota of captive arctic ground squirrels (Urocitellus parryii). We measured body composition across time and gut microbiota density, diversity, and function prior to and after five-weeks on control, high-fat, low-fat (18%, 40%, and 10% energy from fat, respectively), or restricted calorie (50% of control) diets. Squirrels fattened at the same rate and to the same degree on all diets. Additionally, we found no differences in gut microbiota diversity or short chain fatty acid production across time or with diet. Analysis of the gut microbial transcriptome indicated differences in community function among diet groups, but not across time, and revealed shifts in the relative contribution of function at a taxonomic level. Our results demonstrate that pre-hibernation fattening of arctic ground squirrels is robust to changes in diet and is accomplished by more than increased food intake. Although our analyses did not uncover a definitive link between host fattening and the gut microbiota, and suggest the squirrels may possess a gut microbial community structure that is unresponsive to dietary changes, studies manipulating diet earlier in the active season may yet uncover a relationship between host diet, fattening and gut microbiota. This article is protected by copyright. All rights reserved.
In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.
We examined the seasonal changes of the cecal microbiota of captive arctic ground squirrels (Urocitellus parryii) by measuring microbial diversity and composition, total bacterial density and viability, and short-chain fatty acid concentrations at four sample periods (summer, torpor, interbout arousal, and posthibernation). Abundance of Firmicutes was lower, whereas abundances of Bacteroidetes, Verrucomicrobia, and Proteobacteria were higher during torpor and interbout arousal than in summer. Bacterial densities and percentages of live bacteria were significantly higher in summer than during torpor and interbout arousal. Likewise, total short-chain fatty acid concentrations were significantly greater during summer than during torpor and interbout arousal. Concentrations of individual short-chain fatty acids varied across sample periods, with butyrate concentrations higher and acetate concentrations lower during summer than at all other sample periods. Characteristics of the gut community posthibernation were more similar to those during torpor and interbout arousal than to those during summer. However, higher abundances of the genera Bacteroides and Akkermansia occurred during posthibernation than during interbout arousal and torpor. Collectively, our results clearly demonstrate that seasonal changes in physiology associated with hibernation and activity affect the gut microbial community in the arctic ground squirrel. Importantly, similarities between the gut microbiota of arctic ground squirrels and thirteen-lined ground squirrels suggest the potential for a core microbiota during hibernation.
Notes
Cites: Gut Microbes. 2012 Jul-Aug;3(4):289-30622572875
Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA. Electronic address: frank.vonhippel@nau.edu.
People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents - in this case, Yupik people who had no influence over site selection and use by the United States military.
Notes
Cites: Sci Total Environ. 2010 Jul 1;408(15):2995-3043 PMID 19910021
Cites: Bioinformatics. 2015 Jan 15;31(2):166-9 PMID 25260700
Cites: Sci Total Environ. 2005 Apr 15;342(1-3):5-86 PMID 15866268
Cites: Sci Total Environ. 2016 Jan 15;541:412-423 PMID 26410716
Cites: Sci Total Environ. 1995 Jan 15;160-161:529-37 PMID 7892583
Cites: Environ Health Perspect. 2008 Jun;116(6):806-13 PMID 18560538