Skip header and navigation

Refine By

34 records – page 1 of 4.

Associations between serum polybrominated diphenyl ethers and thyroid hormones in a cross sectional study of a remote Alaska Native population.

https://arctichealth.org/en/permalink/ahliterature289441
Source
Sci Rep. 2018 Feb 02; 8(1):2198
Publication Type
Journal Article
Date
Feb-02-2018
Author
Samuel C Byrne
Pamela Miller
Samarys Seguinot-Medina
Vi Waghiyi
C Loren Buck
Frank A von Hippel
David O Carpenter
Author Affiliation
Environmental Studies, St. Lawrence University, Canton, NY, USA. sbyrne@stlawu.edu.
Source
Sci Rep. 2018 Feb 02; 8(1):2198
Date
Feb-02-2018
Language
English
Publication Type
Journal Article
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Notes
Cites: Biometrics. 1986 Mar;42(1):121-30 PMID 3719049
Cites: Toxicology. 2002 Aug 15;177(2-3):227-43 PMID 12135626
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-500 PMID 2505694
Cites: Environ Sci Technol. 2015 Feb 3;49(3):1521-8 PMID 25548829
Cites: Toxicol Sci. 2009 Jan;107(1):27-39 PMID 18978342
Cites: J Clin Res Pediatr Endocrinol. 2013;5 Suppl 1:40-4 PMID 23149391
Cites: Environ Health Perspect. 2009 Oct;117(10):1520-5 PMID 20019900
Cites: Environ Health Perspect. 2008 Jun;116(6):806-13 PMID 18560538
Cites: Int J Hyg Environ Health. 2011 Mar;214(2):115-20 PMID 21106438
Cites: Curr Opin Pharmacol. 2014 Dec;19:125-33 PMID 25306433
Cites: Environ Sci Technol. 2012 Apr 17;46(8):4633-40 PMID 22482873
Cites: Environ Health Perspect. 2010 Mar;118(3):357-62 PMID 20064778
Cites: Environ Health Perspect. 2005 Nov;113(11):1549-54 PMID 16263510
Cites: Environ Sci Technol. 2013 Oct 15;47(20):11776-84 PMID 24066858
Cites: Toxicol Sci. 2000 Jul;56(1):95-104 PMID 10869457
Cites: Environ Health Perspect. 2008 Dec;116(12):1635-41 PMID 19079713
Cites: Environ Health Perspect. 2009 Sep;117(9):1380-6 PMID 19750101
Cites: Environ Health. 2016 May 24;15(1):60 PMID 27215290
Cites: Environ Sci Technol. 2012 Dec 4;46(23):12943-51 PMID 23110413
Cites: Eur J Endocrinol. 2005 Jan;152(1):1-9 PMID 15762182
Cites: Environ Health Perspect. 2009 Feb;117(2):197-202 PMID 19270788
Cites: Sci Total Environ. 2010 Jul 1;408(15):2885-918 PMID 19815253
Cites: Mol Nutr Food Res. 2008 Feb;52(2):284-98 PMID 18161906
Cites: Arch Intern Med. 2000 Feb 28;160(4):526-34 PMID 10695693
Cites: J Clin Endocrinol Metab. 2004 Jul;89(7):3365-70 PMID 15240616
Cites: Environ Sci Technol. 2011 Sep 15;45(18):7896-905 PMID 21830753
Cites: J Toxicol Environ Health A. 2011;74(18):1195-214 PMID 21797772
Cites: J Clin Endocrinol Metab. 2010 Aug;95(8):3614-7 PMID 20685890
Cites: Environ Sci Technol. 2011 Jul 15;45(14):6129-35 PMID 21699185
Cites: Environ Sci Technol. 2004 Feb 15;38(4):945-56 PMID 14998004
Cites: Environ Health Perspect. 2010 May;118(5):699-704 PMID 20103495
Cites: Environ Pollut. 2017 Dec;231(Pt 1):387-395 PMID 28818814
Cites: J Thyroid Res. 2011;2011:875125 PMID 21687614
Cites: Environ Toxicol Pharmacol. 2008 May;25(3):386-92 PMID 21783878
Cites: Chem Res Toxicol. 2015 Jun 15;28(6):1265-74 PMID 26004626
Cites: J Clin Endocrinol Metab. 2007 Mar;92(3):841-5 PMID 17200168
Cites: Sci Total Environ. 2008 Aug 15;401(1-3):60-72 PMID 18538377
Cites: Environ Int. 2012 Apr;40:102-9 PMID 21802148
Cites: Toxicol Lett. 2012 Mar 7;209(2):193-201 PMID 22233939
Cites: J Am Geriatr Soc. 1992 Apr;40(4):325-35 PMID 1556359
Cites: Anal Bioanal Chem. 2006 Oct;386(4):807-17 PMID 17165211
Cites: Am J Epidemiol. 2006 Feb 15;163(4):374-83 PMID 16394206
Cites: Epidemiology. 1990 Jan;1(1):43-6 PMID 2081237
Cites: Environ Sci Technol. 2005 Dec 1;39(23):9057-63 PMID 16382925
Cites: Toxicol Sci. 2001 May;61(1):76-82 PMID 11294977
Cites: Toxicol Sci. 2012 May;127(1):76-83 PMID 22345314
Cites: PLoS One. 2015 May 18;10(5):e0126989 PMID 25992849
Cites: Environ Health Perspect. 2005 Jul;113(7):853-7 PMID 16002372
Cites: Arch Environ Health. 2001 Mar-Apr;56(2):138-43 PMID 11339677
Cites: Environ Sci Technol. 2008 Feb 15;42(4):1377-84 PMID 18351120
Cites: Int J Hyg Environ Health. 2014 Apr-May;217(4-5):473-82 PMID 24138783
Cites: Environ Health Perspect. 2015 Oct;123(10):1079-85 PMID 25893858
Cites: Arch Intern Med. 2005 Nov 28;165(21):2460-6 PMID 16314541
Cites: Environ Sci Technol. 2008 Mar 15;42(6):2195-200 PMID 18411489
Cites: Environ Health Perspect. 2016 Apr;124(4):420-5 PMID 26372669
Cites: Environ Health. 2016 Apr 26;15:55 PMID 27114094
Cites: Thyroid. 2012 Dec;22(12):1200-35 PMID 22954017
Cites: Environ Health Perspect. 2006 Feb;114(2):176-81 PMID 16451851
Cites: Epidemiology. 1999 Jan;10(1):37-48 PMID 9888278
Cites: Arch Toxicol. 2001 Jun;75(4):200-8 PMID 11482517
Cites: Environ Res. 2016 Aug;149:222-230 PMID 27228485
PubMed ID
29396447 View in PubMed
Less detail

Associations between serum polybrominated diphenyl ethers and thyroid hormones in a cross sectional study of a remote Alaska Native population.

https://arctichealth.org/en/permalink/ahliterature289599
Source
Sci Rep. 2018 Feb 02; 8(1):2198
Publication Type
Journal Article
Date
Feb-02-2018
Author
Samuel C Byrne
Pamela Miller
Samarys Seguinot-Medina
Vi Waghiyi
C Loren Buck
Frank A von Hippel
David O Carpenter
Author Affiliation
Environmental Studies, St. Lawrence University, Canton, NY, USA. sbyrne@stlawu.edu.
Source
Sci Rep. 2018 Feb 02; 8(1):2198
Date
Feb-02-2018
Language
English
Publication Type
Journal Article
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
Notes
Cites: Biometrics. 1986 Mar;42(1):121-30 PMID 3719049
Cites: Toxicology. 2002 Aug 15;177(2-3):227-43 PMID 12135626
Cites: Arch Environ Contam Toxicol. 1989 Jul-Aug;18(4):495-500 PMID 2505694
Cites: Environ Sci Technol. 2015 Feb 3;49(3):1521-8 PMID 25548829
Cites: Toxicol Sci. 2009 Jan;107(1):27-39 PMID 18978342
Cites: J Clin Res Pediatr Endocrinol. 2013;5 Suppl 1:40-4 PMID 23149391
Cites: Environ Health Perspect. 2009 Oct;117(10):1520-5 PMID 20019900
Cites: Environ Health Perspect. 2008 Jun;116(6):806-13 PMID 18560538
Cites: Int J Hyg Environ Health. 2011 Mar;214(2):115-20 PMID 21106438
Cites: Curr Opin Pharmacol. 2014 Dec;19:125-33 PMID 25306433
Cites: Environ Sci Technol. 2012 Apr 17;46(8):4633-40 PMID 22482873
Cites: Environ Health Perspect. 2010 Mar;118(3):357-62 PMID 20064778
Cites: Environ Health Perspect. 2005 Nov;113(11):1549-54 PMID 16263510
Cites: Environ Sci Technol. 2013 Oct 15;47(20):11776-84 PMID 24066858
Cites: Toxicol Sci. 2000 Jul;56(1):95-104 PMID 10869457
Cites: Environ Health Perspect. 2008 Dec;116(12):1635-41 PMID 19079713
Cites: Environ Health Perspect. 2009 Sep;117(9):1380-6 PMID 19750101
Cites: Environ Health. 2016 May 24;15(1):60 PMID 27215290
Cites: Environ Sci Technol. 2012 Dec 4;46(23):12943-51 PMID 23110413
Cites: Eur J Endocrinol. 2005 Jan;152(1):1-9 PMID 15762182
Cites: Environ Health Perspect. 2009 Feb;117(2):197-202 PMID 19270788
Cites: Sci Total Environ. 2010 Jul 1;408(15):2885-918 PMID 19815253
Cites: Mol Nutr Food Res. 2008 Feb;52(2):284-98 PMID 18161906
Cites: Arch Intern Med. 2000 Feb 28;160(4):526-34 PMID 10695693
Cites: J Clin Endocrinol Metab. 2004 Jul;89(7):3365-70 PMID 15240616
Cites: Environ Sci Technol. 2011 Sep 15;45(18):7896-905 PMID 21830753
Cites: J Toxicol Environ Health A. 2011;74(18):1195-214 PMID 21797772
Cites: J Clin Endocrinol Metab. 2010 Aug;95(8):3614-7 PMID 20685890
Cites: Environ Sci Technol. 2011 Jul 15;45(14):6129-35 PMID 21699185
Cites: Environ Sci Technol. 2004 Feb 15;38(4):945-56 PMID 14998004
Cites: Environ Health Perspect. 2010 May;118(5):699-704 PMID 20103495
Cites: Environ Pollut. 2017 Dec;231(Pt 1):387-395 PMID 28818814
Cites: J Thyroid Res. 2011;2011:875125 PMID 21687614
Cites: Environ Toxicol Pharmacol. 2008 May;25(3):386-92 PMID 21783878
Cites: Chem Res Toxicol. 2015 Jun 15;28(6):1265-74 PMID 26004626
Cites: J Clin Endocrinol Metab. 2007 Mar;92(3):841-5 PMID 17200168
Cites: Sci Total Environ. 2008 Aug 15;401(1-3):60-72 PMID 18538377
Cites: Environ Int. 2012 Apr;40:102-9 PMID 21802148
Cites: Toxicol Lett. 2012 Mar 7;209(2):193-201 PMID 22233939
Cites: J Am Geriatr Soc. 1992 Apr;40(4):325-35 PMID 1556359
Cites: Anal Bioanal Chem. 2006 Oct;386(4):807-17 PMID 17165211
Cites: Am J Epidemiol. 2006 Feb 15;163(4):374-83 PMID 16394206
Cites: Epidemiology. 1990 Jan;1(1):43-6 PMID 2081237
Cites: Environ Sci Technol. 2005 Dec 1;39(23):9057-63 PMID 16382925
Cites: Toxicol Sci. 2001 May;61(1):76-82 PMID 11294977
Cites: Toxicol Sci. 2012 May;127(1):76-83 PMID 22345314
Cites: PLoS One. 2015 May 18;10(5):e0126989 PMID 25992849
Cites: Environ Health Perspect. 2005 Jul;113(7):853-7 PMID 16002372
Cites: Arch Environ Health. 2001 Mar-Apr;56(2):138-43 PMID 11339677
Cites: Environ Sci Technol. 2008 Feb 15;42(4):1377-84 PMID 18351120
Cites: Int J Hyg Environ Health. 2014 Apr-May;217(4-5):473-82 PMID 24138783
Cites: Environ Health Perspect. 2015 Oct;123(10):1079-85 PMID 25893858
Cites: Arch Intern Med. 2005 Nov 28;165(21):2460-6 PMID 16314541
Cites: Environ Sci Technol. 2008 Mar 15;42(6):2195-200 PMID 18411489
Cites: Environ Health Perspect. 2016 Apr;124(4):420-5 PMID 26372669
Cites: Environ Health. 2016 Apr 26;15:55 PMID 27114094
Cites: Thyroid. 2012 Dec;22(12):1200-35 PMID 22954017
Cites: Environ Health Perspect. 2006 Feb;114(2):176-81 PMID 16451851
Cites: Epidemiology. 1999 Jan;10(1):37-48 PMID 9888278
Cites: Arch Toxicol. 2001 Jun;75(4):200-8 PMID 11482517
Cites: Environ Res. 2016 Aug;149:222-230 PMID 27228485
PubMed ID
29396447 View in PubMed
Less detail

Associations between serum polybrominated diphenyl ethers and thyroid hormones in a cross sectional study of a remote Alaska Native population.

https://arctichealth.org/en/permalink/ahliterature296904
Source
Sci Rep. 2018 02 02; 8(1):2198
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Date
02-02-2018
Author
Samuel C Byrne
Pamela Miller
Samarys Seguinot-Medina
Vi Waghiyi
C Loren Buck
Frank A von Hippel
David O Carpenter
Author Affiliation
Environmental Studies, St. Lawrence University, Canton, NY, USA. sbyrne@stlawu.edu.
Source
Sci Rep. 2018 02 02; 8(1):2198
Date
02-02-2018
Language
English
Publication Type
Journal Article
Research Support, N.I.H., Extramural
Keywords
Adult
Alaska
Alaska Natives
Correlation of Data
Cross-Sectional Studies
Environmental pollutants - blood
Female
Halogenated Diphenyl Ethers - blood
Humans
Male
Serum - chemistry
Thyroid Hormones - blood
Young Adult
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants. Arctic indigenous peoples are exposed to PBDEs through a traditional diet high in marine mammals. PBDEs disrupt thyroid homeostasis. The aim of this study was to assess the relationship between serum PBDEs and thyroid function in a remote population of St. Lawrence Island Yupik. Serum samples were collected from 85 individuals from St. Lawrence Island, Alaska and measured for concentrations of PBDEs, free and total thyroxine (T4), free and total triiodothyronine (T3), and thyroid stimulating hormone (TSH). The relationships between PBDEs and thyroid hormones were assessed using multiple linear regression fit with generalized estimating equations. Serum concentrations of several Penta-BDE congeners (BDE-28/33, 47, and 100) were positively associated with concentrations of TSH and free T3, while serum concentration of BDE-153 was negatively associated with total T3 concentrations. Both BDE-47 and 153 remained significantly associated with thyroid hormones when BDE-47, BDE-153, and BDE-209 were covariates in the same model. There were no significant relationships between serum concentrations of PBDEs and either free or total T4. Individual PBDEs are associated with thyroid hormones in serum from a remote population of Alaska Natives, and directions of effect differ by congener.
PubMed ID
29396447 View in PubMed
Less detail

Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels.

https://arctichealth.org/en/permalink/ahliterature282215
Source
J Biol Rhythms. 2017 Apr 01;:748730417702246
Publication Type
Article
Date
Apr-01-2017
Author
Tomoko Ikeno
Cory T Williams
C Loren Buck
Brian M Barnes
Lily Yan
Source
J Biol Rhythms. 2017 Apr 01;:748730417702246
Date
Apr-01-2017
Language
English
Publication Type
Article
Abstract
Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, semi-fossorial rodent that appears above-ground daily during its short active season in spring and summer before re-entering a constantly dark burrow for 6 to 9 months of hibernation. This hibernation consists of multiple week-long torpor bouts interrupted by short (
PubMed ID
28452286 View in PubMed
Less detail

Clock Gene Expression in the Suprachiasmatic Nucleus of Hibernating Arctic Ground Squirrels.

https://arctichealth.org/en/permalink/ahliterature290083
Source
J Biol Rhythms. 2017 06; 32(3):246-256
Publication Type
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Date
06-2017
Author
Tomoko Ikeno
Cory T Williams
C Loren Buck
Brian M Barnes
Lily Yan
Author Affiliation
Department of Psychology, Michigan State University, East Lansing, Michigan.
Source
J Biol Rhythms. 2017 06; 32(3):246-256
Date
06-2017
Language
English
Publication Type
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Keywords
ARNTL Transcription Factors - genetics
Animals
Arctic Regions
Body temperature
Circadian Clocks - genetics
Circadian Rhythm - physiology
Hibernation - genetics
Light
Period Circadian Proteins - genetics
Photoperiod
Proto-Oncogene Proteins c-fos - genetics
Sciuridae - genetics - physiology
Seasons
Suprachiasmatic Nucleus - physiology
Abstract
Most organisms have a circadian system, entrained to daily light-dark cycles, that regulates 24-h rhythms of physiology and behavior. It is unclear, however, how circadian systems function in animals that exhibit seasonal metabolic suppression, particularly when this coincides with the long-term absence of a day-night cycle. The arctic ground squirrel, Urocytellus parryii, is a medium-sized, semi-fossorial rodent that appears above-ground daily during its short active season in spring and summer before re-entering a constantly dark burrow for 6 to 9 months of hibernation. This hibernation consists of multiple week-long torpor bouts interrupted by short (
PubMed ID
28452286 View in PubMed
Less detail

Coping with differences in snow cover: the impact on the condition, physiology and fitness of an arctic hibernator.

https://arctichealth.org/en/permalink/ahliterature287444
Source
Conserv Physiol. 2017;5(1):cox065
Publication Type
Article
Date
2017
Author
Michael J Sheriff
Rudy Boonstra
Rupert Palme
C Loren Buck
Brian M Barnes
Source
Conserv Physiol. 2017;5(1):cox065
Date
2017
Language
English
Publication Type
Article
Abstract
The Earth's climate is changing at an unprecedented rate and, as ecologists, we are challenged with the difficult task of predicting how individuals and populations will respond to climate-induced changes to local and global ecosystems. Although we are beginning to understand some of the responses to changing seasonality, the physiological mechanisms that may drive these responses remain unknown. Using long-term data comparing two nearby populations (
Notes
Cites: Science. 2000 Sep 22;289(5487):2068-7411000103
Cites: Integr Comp Biol. 2013 Dec;53(6):960-423933811
Cites: Ann N Y Acad Sci. 2005 Apr;1040:162-7115891021
Cites: Vet Res Commun. 2002 Feb;26(2):127-3911922482
Cites: Nature. 2003 Jan 2;421(6918):37-4212511946
Cites: Science. 1989 Jun 30;244(4912):1593-52740905
Cites: Trends Ecol Evol. 2006 Jan;21(1):38-4616701468
Cites: Gen Comp Endocrinol. 2010 May 1;166(3):614-920051245
Cites: Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723):28483870
Cites: Am Nat. 2017 Dec;190(6):854-85929166160
Cites: Proc Biol Sci. 2011 Mar 22;278(1707):835-4220861045
Cites: Physiol Biochem Zool. 2017 May/Jun;90(3):370-38228384423
Cites: Nature. 2010 Jul 22;466(7305):482-520651690
Cites: Proc Biol Sci. 2011 Aug 7;278(1716):2369-7521177687
Cites: Trends Mol Med. 2007 Jul;13(7):269-7717544850
Cites: Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1630-310677510
Cites: Philos Trans R Soc Lond B Biol Sci. 2013 Jul 08;368(1624):2012048023836786
Cites: Nature. 2012 Sep 27;489(7417):554-722878721
Cites: J Anim Ecol. 2009 Nov;78(6):1249-5819426257
Cites: Conserv Physiol. 2014 Jun 27;2(1):cou02327293644
Cites: Gen Comp Endocrinol. 2007 Feb;150(3):430-617161400
Cites: Nature. 2006 May 4;441(7089):81-316672969
Cites: Integr Comp Biol. 2017 Sep 1;57(3):437-44928957523
Cites: Endocr Rev. 2000 Feb;21(1):55-8910696570
Cites: Trends Ecol Evol. 2004 May;19(5):249-5516701264
Cites: Trends Ecol Evol. 2009 Nov;24(11):634-4219679371
Cites: Gen Comp Endocrinol. 2008 Jul;157(3):288-9518602555
Cites: Gen Comp Endocrinol. 2008 Jul;157(3):207-1618558405
Cites: Proc Biol Sci. 2010 Apr 22;277(1685):1259-6620018784
Cites: Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1647-6422566673
Cites: Gen Comp Endocrinol. 2016 Oct 1;237:10-1827449342
Cites: Integr Comp Biol. 2004 Apr;44(2):95-10821680490
Cites: Oecologia. 2011 Aug;166(4):869-8721344254
Cites: Horm Behav. 2005 Jun;48(1):44-5215919384
Cites: Gen Comp Endocrinol. 2000 Apr;118(1):113-2210753573
Cites: Philos Trans R Soc Lond B Biol Sci. 2008 Jul 12;363(1501):2369-7518006410
Cites: Science. 2008 Oct 31;322(5902):690-218974339
PubMed ID
29218224 View in PubMed
Less detail

Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure.

https://arctichealth.org/en/permalink/ahliterature280499
Source
Environ Microbiol. 2017 Mar 02;
Publication Type
Article
Date
Mar-02-2017
Author
Jasmine J Hatton
Timothy J Stevenson
C Loren Buck
Khrystyne N Duddleston
Source
Environ Microbiol. 2017 Mar 02;
Date
Mar-02-2017
Language
English
Publication Type
Article
Abstract
We examined the effect of diet on pre-hibernation fattening and the gut microbiota of captive arctic ground squirrels (Urocitellus parryii). We measured body composition across time and gut microbiota density, diversity, and function prior to and after five-weeks on control, high-fat, low-fat (18%, 40%, and 10% energy from fat, respectively), or restricted calorie (50% of control) diets. Squirrels fattened at the same rate and to the same degree on all diets. Additionally, we found no differences in gut microbiota diversity or short chain fatty acid production across time or with diet. Analysis of the gut microbial transcriptome indicated differences in community function among diet groups, but not across time, and revealed shifts in the relative contribution of function at a taxonomic level. Our results demonstrate that pre-hibernation fattening of arctic ground squirrels is robust to changes in diet and is accomplished by more than increased food intake. Although our analyses did not uncover a definitive link between host fattening and the gut microbiota, and suggest the squirrels may possess a gut microbial community structure that is unresponsive to dietary changes, studies manipulating diet earlier in the active season may yet uncover a relationship between host diet, fattening and gut microbiota. This article is protected by copyright. All rights reserved.
PubMed ID
28251799 View in PubMed
Less detail

Effect of testosterone blockers on male aggression, song and parental care in an arctic passerine, the Lapland longspur (Calcarius lapponicus).

https://arctichealth.org/en/permalink/ahliterature297972
Source
Horm Behav. 2019 Feb 22; 110:10-18
Publication Type
Journal Article
Date
Feb-22-2019
Author
Kathleen E Hunt
Thomas P Hahn
C Loren Buck
John C Wingfield
Author Affiliation
Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA. Electronic address: Kathleen.Hunt@nau.edu.
Source
Horm Behav. 2019 Feb 22; 110:10-18
Date
Feb-22-2019
Language
English
Publication Type
Journal Article
Abstract
In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.
PubMed ID
30735664 View in PubMed
Less detail

Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota.

https://arctichealth.org/en/permalink/ahliterature270070
Source
Appl Environ Microbiol. 2014 Sep;80(18):5611-22
Publication Type
Article
Date
Sep-2014
Author
Timothy J Stevenson
Khrystyne N Duddleston
C Loren Buck
Source
Appl Environ Microbiol. 2014 Sep;80(18):5611-22
Date
Sep-2014
Language
English
Publication Type
Article
Keywords
Animals
Arctic Regions
Bacterial Load
Biota
Cecum - microbiology
Fatty Acids, Volatile - analysis
Microbial Viability
Sciuridae - microbiology
Seasons
Abstract
We examined the seasonal changes of the cecal microbiota of captive arctic ground squirrels (Urocitellus parryii) by measuring microbial diversity and composition, total bacterial density and viability, and short-chain fatty acid concentrations at four sample periods (summer, torpor, interbout arousal, and posthibernation). Abundance of Firmicutes was lower, whereas abundances of Bacteroidetes, Verrucomicrobia, and Proteobacteria were higher during torpor and interbout arousal than in summer. Bacterial densities and percentages of live bacteria were significantly higher in summer than during torpor and interbout arousal. Likewise, total short-chain fatty acid concentrations were significantly greater during summer than during torpor and interbout arousal. Concentrations of individual short-chain fatty acids varied across sample periods, with butyrate concentrations higher and acetate concentrations lower during summer than at all other sample periods. Characteristics of the gut community posthibernation were more similar to those during torpor and interbout arousal than to those during summer. However, higher abundances of the genera Bacteroides and Akkermansia occurred during posthibernation than during interbout arousal and torpor. Collectively, our results clearly demonstrate that seasonal changes in physiology associated with hibernation and activity affect the gut microbial community in the arctic ground squirrel. Importantly, similarities between the gut microbiota of arctic ground squirrels and thirteen-lined ground squirrels suggest the potential for a core microbiota during hibernation.
Notes
Cites: Gut Microbes. 2012 Jul-Aug;3(4):289-30622572875
Cites: Gut. 2012 Apr;61(4):543-5322110050
Cites: Pharmacol Res. 2013 Mar;69(1):52-6023147033
Cites: Appl Environ Microbiol. 1977 Feb;33(2):319-22848954
Cites: Am J Physiol. 1975 Jan;228(1):325-301147024
Cites: Appl Environ Microbiol. 2014 Jul;80(14):4260-824795380
Cites: Fed Proc. 1980 Oct;39(12):2959-636998738
Cites: Biosci Rep. 1985 May;5(5):393-4003896338
Cites: Am J Physiol. 1985 Oct;249(4 Pt 2):R462-704051032
Cites: J Comp Physiol B. 1988;158(1):25-373385059
Cites: J Appl Bacteriol. 1988 Aug;65(2):103-113204069
Cites: Science. 1989 Jun 30;244(4912):1593-52740905
Cites: Physiol Rev. 1990 Apr;70(2):567-902181501
Cites: Am J Physiol. 1990 Aug;259(2 Pt 2):R385-922386247
Cites: Am J Physiol. 1992 Sep;263(3 Pt 2):R517-231415636
Cites: Clin Exp Pharmacol Physiol. 1998 Sep;25(9):736-99750966
Cites: Science. 2005 Mar 25;307(5717):1915-2015790844
Cites: Science. 2005 Mar 25;307(5717):1955-915790854
Cites: Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R255-6210896889
Cites: J Comp Physiol B. 2002 Apr;172(3):197-20711919701
Cites: Science. 2003 Mar 28;299(5615):2074-612663928
Cites: Proc Nutr Soc. 2003 Feb;62(1):67-7212740060
Cites: J Appl Bacteriol. 1970 Sep;33(3):505-144923558
Cites: Appl Environ Microbiol. 2005 Aug;71(8):4679-8916085863
Cites: Appl Environ Microbiol. 2005 Dec;71(12):8228-3516332807
Cites: Appl Environ Microbiol. 2006 Jul;72(7):5069-7216820507
Cites: J Appl Microbiol. 2007 May;102(5):1197-20817448155
Cites: Appl Environ Microbiol. 2007 Aug;73(16):5261-717586664
Cites: Appl Environ Microbiol. 2008 Mar;74(5):1646-818083887
Cites: Cell Host Microbe. 2008 Nov 13;4(5):447-5718996345
Cites: Am J Physiol Regul Integr Comp Physiol. 2009 Feb;296(2):R383-9319052316
Cites: FEMS Microbiol Lett. 2009 May;294(1):1-819222573
Cites: Cell Host Microbe. 2009 Jun 18;5(6):522-619527880
Cites: Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11276-8119549860
Cites: Appl Environ Microbiol. 2009 Oct;75(20):6451-619700553
Cites: Bioinformatics. 2010 Jan 15;26(2):266-719914921
Cites: PLoS One. 2010;5(3):e949020224823
Cites: Nat Methods. 2010 May;7(5):335-620383131
Cites: Nat Methods. 2010 Sep;7(9):668-920805793
Cites: Bioinformatics. 2010 Oct 1;26(19):2460-120709691
Cites: Gastroenterol Clin Biol. 2010 Sep;34 Suppl 1:S16-2220889000
Cites: ISME J. 2010 Nov;4(11):1375-8520520652
Cites: Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18933-820937875
Cites: Nature. 2011 May 12;473(7346):174-8021508958
Cites: Proc Biol Sci. 2011 Aug 7;278(1716):2369-7521177687
Cites: Rapid Commun Mass Spectrom. 2011 Dec 15;25(23):3491-622095496
Cites: Am J Physiol Regul Integr Comp Physiol. 2013 Jan 1;304(1):R33-4223152108
PubMed ID
25002417 View in PubMed
Less detail

Endocrine disruption and differential gene expression in sentinel fish on St. Lawrence Island, Alaska: Health implications for indigenous residents.

https://arctichealth.org/en/permalink/ahliterature293036
Source
Environ Pollut. 2018 Mar; 234:279-287
Publication Type
Journal Article
Date
Mar-2018
Author
Frank A von Hippel
Pamela K Miller
David O Carpenter
Danielle Dillon
Lauren Smayda
Ioanna Katsiadaki
Tom A Titus
Peter Batzel
John H Postlethwait
C Loren Buck
Author Affiliation
Department of Biological Sciences & Center for Bioengineering Innovation, Northern Arizona University, 617 S. Beaver St., PO Box 5640, Flagstaff, AZ 86011, USA. Electronic address: frank.vonhippel@nau.edu.
Source
Environ Pollut. 2018 Mar; 234:279-287
Date
Mar-2018
Language
English
Publication Type
Journal Article
Keywords
Alaska
Animals
Arctic Regions
Endocrine Disruptors - analysis - metabolism - pharmacology
Environmental Restoration and Remediation
Female
Fish Proteins - genetics - metabolism
Food contamination - analysis
Food Safety
Fresh Water - analysis
Humans
Islands
Male
Polychlorinated biphenyls - analysis
Seafood - analysis
Smegmamorpha - genetics - growth & development - metabolism
Vitellogenins - genetics - metabolism
Water Pollutants, Chemical - analysis - metabolism - pharmacology
Abstract
People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents - in this case, Yupik people who had no influence over site selection and use by the United States military.
Notes
Cites: Sci Total Environ. 2010 Jul 1;408(15):2995-3043 PMID 19910021
Cites: Bioinformatics. 2015 Jan 15;31(2):166-9 PMID 25260700
Cites: Sci Total Environ. 2005 Apr 15;342(1-3):5-86 PMID 15866268
Cites: Sci Total Environ. 2016 Jan 15;541:412-423 PMID 26410716
Cites: Sci Total Environ. 1995 Jan 15;160-161:529-37 PMID 7892583
Cites: Environ Health Perspect. 2008 Jun;116(6):806-13 PMID 18560538
Cites: Genetics. 2011 Aug;188(4):799-808 PMID 21828280
Cites: Toxicol In Vitro. 2013 Sep;27(6):1634-43 PMID 23603478
Cites: Environ Health Perspect. 1999 Oct;107(10):823-8 PMID 10504150
Cites: Mol Reprod Dev. 2014 Feb;81(2):113-25 PMID 24214338
Cites: Chemosphere. 1997 Mar-Apr;34(5-7):1459-68 PMID 9134679
Cites: Sci Total Environ. 2014 Aug 15;490:603-9 PMID 24880549
Cites: Lancet Oncol. 2013 Apr;14(4):287-8 PMID 23499544
Cites: Environ Health Perspect. 2003 Mar;111(3):357-576 PMID 12611666
Cites: Comp Biochem Physiol B Biochem Mol Biol. 2016 Sep;199:97-104 PMID 26803990
Cites: Hepatology. 2008 Oct;48(4):1302-11 PMID 18798339
Cites: Sci Total Environ. 2003 Jan 20;302(1-3):27-52 PMID 12526896
Cites: Science. 2016 Dec 9;354(6317):1305-1308 PMID 27940876
Cites: Rev Environ Health. 2006 Jan-Mar;21(1):1-23 PMID 16700427
Cites: Environ Health Perspect. 2009 Jan;117(1):7-16 PMID 19165381
Cites: Bioinformatics. 2014 Aug 1;30(15):2114-20 PMID 24695404
Cites: Bull Environ Contam Toxicol. 1989 Nov;43(5):641-6 PMID 2508801
Cites: Environ Health Perspect. 2010 Mar;118(3):370-4 PMID 20064773
Cites: Int J Circumpolar Health. 2005 Sep;64(4):322-35 PMID 16277117
Cites: Crit Rev Toxicol. 2000 Jul;30(4):347-570 PMID 10955715
Cites: J Toxicol Environ Health A. 2011;74(18):1195-214 PMID 21797772
Cites: Chemosphere. 2012 Sep;88(11):1340-5 PMID 22722002
Cites: Environ Toxicol Chem. 2009 Apr;28(4):677-90 PMID 19391691
Cites: Chemosphere. 1996 Feb;32(3):531-42 PMID 8907230
Cites: Environ Pollut. 2017 Dec;231(Pt 1):387-395 PMID 28818814
Cites: Environ Sci Technol. 2014 Nov 4;48(21):12952-61 PMID 25286162
Cites: BMC Evol Biol. 2008 Apr 02;8:103 PMID 18384689
Cites: Environ Health Perspect. 1995 Oct;103 Suppl 7:173-8 PMID 8593867
Cites: Environ Toxicol Chem. 2014 Mar;33(3):592-601 PMID 24273070
Cites: Chemosphere. 2002 Mar;46(9-10):1367-72 PMID 12002463
Cites: Environ Health Perspect. 2006 Aug;114(8):1301-5 PMID 16882544
Cites: Gen Comp Endocrinol. 2015 Jan 1;210:130-44 PMID 25448260
Cites: Environ Health Perspect. 2008 Nov;116(11):1547-52 PMID 19057709
Cites: Int J Circumpolar Health. 2013 Aug 05;72:null PMID 23977641
Cites: Bioinformatics. 2010 Apr 1;26(7):873-81 PMID 20147302
Cites: Gen Comp Endocrinol. 2015 Aug 1;219:45-52 PMID 25733204
Cites: Environ Res. 2014 Oct;134:17-23 PMID 25042032
Cites: Environ Sci Technol. 1996 Aug 27;30(9):390A-6A PMID 21649427
Cites: Environ Health Perspect. 2003 Jul;111(9):1253-8 PMID 12842782
Cites: Chemosphere. 1998 Oct-Nov;37(9-12):1845-53 PMID 9828313
Cites: Toxicol Sci. 2006 Oct;93(2):223-41 PMID 16829543
Cites: Nature. 2013 Apr 25;496(7446):498-503 PMID 23594743
Cites: Gen Comp Endocrinol. 2017 Mar 1;243:60-69 PMID 27815158
Cites: J Toxicol Environ Health A. 2015;78(15):976-92 PMID 26262441
Cites: Aquat Toxicol. 2013 Oct 15;142-143:447-57 PMID 24121122
Cites: Chem Biol Interact. 2005 Aug 15;155(3):111-28 PMID 16054614
Cites: Nat Protoc. 2009;4(1):44-57 PMID 19131956
Cites: Environ Health Perspect. 2014 Mar;122(3):304-9 PMID 24398050
Cites: Chemosphere. 2010 Feb;78(7):800-6 PMID 20060147
Cites: Genome Biol. 2014;15(12):550 PMID 25516281
PubMed ID
29182972 View in PubMed
Less detail

34 records – page 1 of 4.