Skip header and navigation

1 records – page 1 of 1.

An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum.

https://arctichealth.org/en/permalink/ahliterature93021
Source
Environ Pollut. 2008 Dec;156(3):980-7
Publication Type
Article
Date
Dec-2008
Author
Beketov Mikhail A
Liess Matthias
Author Affiliation
UFZ-Helmholtz Centre for Environmental Research, Department of System Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany. mikhail.beketov@ufz.de
Source
Environ Pollut. 2008 Dec;156(3):980-7
Date
Dec-2008
Language
English
Publication Type
Article
Keywords
Animals
Biodiversity
Ecology - methods
Ecosystem
Environmental Monitoring - methods
Food chain
Hazardous Substances - toxicity
Invertebrates - drug effects - physiology
Organic Chemicals - toxicity
Rivers
Siberia
Species Specificity
Water Pollutants, Chemical - toxicity
Abstract
Distinguishing between effects of natural and anthropogenic environmental factors on ecosystems is a fundamental problem in environmental science. In river systems the longitudinal gradient of environmental factors is one of the most relevant sources of dissimilarity between communities that could be confounded with anthropogenic disturbances. To test the hypothesis that in macroinvertebrate communities the distribution of species' sensitivity to organic toxicants is independent of natural longitudinal factors, but depends on contamination with organic toxicants, we analysed the relationship between community sensitivity SPEAR(organic) (average community sensitivity to organic toxicants) and natural and anthropogenic environmental factors in a large-scale river system, from alpine streams to a lowland river. The results show that SPEAR(organic) is largely independent of natural longitudinal factors, but strongly dependent on contamination with organic toxicants (petrochemicals and synthetic surfactants). Usage of SPEAR(organic) as a stressor-specific longitude-independent measure will facilitate detection of community disturbance by organic toxicants.
PubMed ID
18547697 View in PubMed
Less detail