Skip header and navigation

3 records – page 1 of 1.

Brucella Infection in Asian Sea Otters (Enhydra lutris lutris) on Bering Island, Russia.

https://arctichealth.org/en/permalink/ahliterature290856
Source
J Wildl Dis. 2017 10; 53(4):864-868
Publication Type
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Date
10-2017
Author
Tristan L Burgess
Christine Kreuder Johnson
Alexander Burdin
Verena A Gill
Angela M Doroff
Pamela Tuomi
Woutrina A Smith
Tracey Goldstein
Author Affiliation
1 Karen C. Drayer Wildlife Health Center, University of California Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, California 95965, USA.
Source
J Wildl Dis. 2017 10; 53(4):864-868
Date
10-2017
Language
English
Publication Type
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Keywords
Animals
Bayes Theorem
Brucella - classification - genetics - isolation & purification
Brucellosis - epidemiology - microbiology - veterinary
DNA, Bacterial - isolation & purification
Female
Islands - epidemiology
Male
Markov Chains
Monte Carlo Method
Otters - microbiology
Phylogeny
Polymerase Chain Reaction - veterinary
Rectum - microbiology
Russia - epidemiology
Seroepidemiologic Studies
Abstract
Infection with Brucella spp., long known as a cause of abortion, infertility, and reproductive loss in domestic livestock, has increasingly been documented in marine mammals over the past two decades. We report molecular evidence of Brucella infection in Asian sea otters (Enhydra lutris lutris). Brucella DNA was detected in 3 of 78 (4%) rectal swab samples collected between 2004 and 2006 on Bering Island, Russia. These 78 animals had previously been documented to have a Brucella seroprevalence of 28%, markedly higher than the prevalence documented in sea otters (Enhydra lutris) in North America. All of the DNA sequences amplified were identical to one or more previously isolated Brucella spp. including strains from both terrestrial and marine hosts. Phylogenetic analysis of this sequence suggested that one animal was shedding Brucella spp. DNA with a sequence matching a Brucella abortus strain, whereas two animals yielded a sequence matching a group of strains including isolates classified as Brucella pinnipedialis and Brucella melitensis. Our results highlight the diversity of Brucella spp. within a single sea otter population.
PubMed ID
28715292 View in PubMed
Less detail

Brucella Infection in Asian Sea Otters (Enhydra lutris lutris) on Bering Island, Russia.

https://arctichealth.org/en/permalink/ahliterature284083
Source
J Wildl Dis. 2017 Jul 17;
Publication Type
Article
Date
Jul-17-2017
Author
Tristan L Burgess
Christine Kreuder Johnson
Alexander Burdin
Verena A Gill
Angela M Doroff
Pamela Tuomi
Woutrina A Smith
Tracey Goldstein
Source
J Wildl Dis. 2017 Jul 17;
Date
Jul-17-2017
Language
English
Publication Type
Article
Abstract
Infection with Brucella spp., long known as a cause of abortion, infertility, and reproductive loss in domestic livestock, has increasingly been documented in marine mammals over the past two decades. We report molecular evidence of Brucella infection in Asian sea otters (Enhydra lutris lutris). Brucella DNA was detected in 3 of 78 (4%) rectal swab samples collected between 2004 and 2006 on Bering Island, Russia. These 78 animals had previously been documented to have a Brucella seroprevalence of 28%, markedly higher than the prevalence documented in sea otters (Enhydra lutris) in North America. All of the DNA sequences amplified were identical to one or more previously isolated Brucella spp. including strains from both terrestrial and marine hosts. Phylogenetic analysis of this sequence suggested that one animal was shedding Brucella spp. DNA with a sequence matching a Brucella abortus strain, whereas two animals yielded a sequence matching a group of strains including isolates classified as Brucella pinnipedialis and Brucella melitensis. Our results highlight the diversity of Brucella spp. within a single sea otter population.
PubMed ID
28715292 View in PubMed
Less detail

Sea otters, kelp forests, and the extinction of Steller's sea cow.

https://arctichealth.org/en/permalink/ahliterature267326
Source
Proc Natl Acad Sci U S A. 2015 Oct 26;
Publication Type
Article
Date
Oct-26-2015
Author
James A Estes
Alexander Burdin
Daniel F Doak
Source
Proc Natl Acad Sci U S A. 2015 Oct 26;
Date
Oct-26-2015
Language
English
Publication Type
Article
Abstract
The late Pleistocene extinction of so many large-bodied vertebrates has been variously attributed to two general causes: rapid climate change and the effects of humans as they spread from the Old World to previously uninhabited continents and islands. Many large-bodied vertebrates, especially large apex predators, maintain their associated ecosystems through top-down forcing processes, especially trophic cascades, and megaherbivores also exert an array of strong indirect effects on their communities. Thus, a third possibility for at least some of the Pleistocene extinctions is that they occurred through habitat changes resulting from the loss of these other keystone species. Here we explore the plausibility of this mechanism, using information on sea otters, kelp forests, and the recent extinction of Steller's sea cows from the Commander Islands. Large numbers of sea cows occurred in the Commander Islands at the time of their discovery by Europeans in 1741. Although extinction of these last remaining sea cows during early years of the Pacific maritime fur trade is widely thought to be a consequence of direct human overkill, we show that it is also a probable consequence of the loss of sea otters and the co-occurring loss of kelp, even if not a single sea cow had been killed directly by humans. This example supports the hypothesis that the directly caused extinctions of a few large vertebrates in the late Pleistocene may have resulted in the coextinction of numerous other species.
PubMed ID
26504217 View in PubMed
Less detail